Published unlisted
Edited
Apr 20, 2022
Insert cell
Insert cell
chart = {
let xmin = 0.45;
let xmax = 0.65;
let ymin = 0.47;
let ymax = 1;
let w = 0.9 * width;
let h = w * 0.6;
// h = (w * (ymax - ymin)) / (xmax - xmin);
let pad = 35;

let xScale = d3
.scaleLinear()
.domain([xmin, xmax])
.range([pad, w - pad]);
let yScale = d3
.scaleLinear()
.domain([ymin, ymax])
.range([h - pad, pad]);

let div = d3.create("div").style("width", `${w}px`).style("height", `${h}px`);
let chart = div.append("svg").attr("width", w).attr("height", h);

let lines = chart.append("g");
lines
.append("line")
.attr("x1", xScale(0.5))
.attr("x2", xScale(0.5))
.attr("y1", yScale(ymin))
.attr("y2", yScale(ymax))
.style("stroke", "black")
.style("stroke-width", 1)
.attr("stroke-dasharray", "2 3");

let pts = [];
let x0 = 0.5006;
let y0 = 0.58;
let circles = chart.append("g");

for (let [year, d] of data) {
let all_electoral_votes = d.map((o) => parseInt(o["Electoral Votes"]));
let electoral_1st = all_electoral_votes[0];
let electoral_2nd = all_electoral_votes[1];
let total_electoral_votes = electoral_1st + electoral_2nd;
let electoral_winner_electoral_proportion =
electoral_1st / total_electoral_votes;

let all_popular_votes = d.map((o) => parseInt(o["Popular Votes"]));
let electoral_1st_popular_vote = all_popular_votes[0];
let electoral_2nd_popular_vote = all_popular_votes[1];
let total_popular_votes =
electoral_1st_popular_vote + electoral_2nd_popular_vote;
let electoral_winner_popular_proportion =
electoral_1st_popular_vote / total_popular_votes;

let x = electoral_winner_popular_proportion;
let y = electoral_winner_electoral_proportion;
pts.push([x, y]);

let close_class;
if (Math.abs(x - x0) < 0.005 && Math.abs(y - y0) < 0.005) {
close_class = "close";
} else {
close_class = "far";
}
let circle = circles
.append("circle")
.attr("class", close_class)
.attr("cx", xScale(x))
.attr("cy", yScale(y))
.attr("r", 3)
.style("fill", "#ccc")
.style("stroke", "black")
.style("stroke-width", "0.5px")
.on("mouseenter", function () {
d3.select(this).attr("r", 5).style("stroke-width", "1.5px");
})
.on("mouseleave", function () {
d3.select(this).attr("r", 3).style("stroke-width", "0.5px");
});
tippy(circle.node(), {
allowHTML: true,
content: `
<div>${year}</div>
<div>Winner: ${d[0]["Candidate"]}</div>
<div style="margin-left: 10px">Popular percentage: ${d3.format(
"0.2%"
)(x)}</div>
<div style="margin-left: 10px">Electoral percentage: ${d3.format(
"0.2%"
)(y)}</div>
<div>Loser: ${d[1]["Candidate"]}</div>`
});
}

chart.selectAll(".close").each(function (_, i) {
let c = d3.select(this);
let this_y = c.attr("cy");
c.attr("cy", parseFloat(this_y) + (-1) ** i * 4);
});

let regress = d3.regressionLinear().domain([xmin, xmax])(pts);
let active = true;
lines
.append("line")
.attr("x1", xScale(regress[0][0]))
.attr("x2", xScale(regress[1][0]))
.attr("y1", yScale(regress[0][1]))
.attr("y2", yScale(regress[1][1]))
.style("stroke", "black")
.style("stroke-width", 1);
// chart
// .append('line')
// .attr('x1', xScale(regress[0][0]))
// .attr('x2', xScale(regress[1][0]))
// .attr('y1', yScale(regress[0][1]))
// .attr('y2', yScale(regress[1][1]))
// .style('stroke', 'black')
// .style('stroke-width', 3)
// .style('opacity', 0);

// chart
// .append('circle')
// .attr('cx', xScale(x0))
// .attr('cy', yScale(y0))
// .attr('r', 12)
// .attr('fill', 'yellow')
// .attr('stroke', 'black')
// .attr('opacity', 0.2)
// .on('mouseenter', function() {
// chart.selectAll('.close').each(function(_, i) {
// let c = d3.select(this);
// let this_y = c.attr('cy');
// c.attr('cy', parseFloat(this_y) + (-1) ** i * 4);
// });
// });

chart
.append("g")
.attr("transform", `translate(0, ${h - pad})`)
.call(d3.axisBottom(xScale));
chart
.append("g")
.attr("transform", `translate(${pad})`)
.call(d3.axisLeft(yScale));

let tree = d3.quadtree(pts);
console.log(tree.find(0.5, 0.5, 1));
chart
.on("mousemove", function (evt) {
chart.selectAll(".predict").remove();
let mouse_x = xScale.invert(evt.layerX);
let mouse_y = yScale.invert(evt.layerY);
if (tree.find(mouse_x, mouse_y, 0.01) == undefined) {
let predict_y = regress.predict(mouse_x);
if (Math.abs(mouse_y - predict_y) < 0.01) {
console.log(mouse_x);
chart
.append("circle")
.attr("class", "predict")
.attr("cx", evt.layerX)
.attr("cy", yScale(predict_y))
.attr("r", 3)
.style("fill", "#d00")
.style("stroke", "black")
.style("stroke-width", "1px");
chart
.append("text")
.attr("class", "predict")
.attr("pointer-events", "none")
.attr("x", evt.layerX)
.attr("y", yScale(predict_y))
.attr("text-anchor", evt.layerX < 0.7 * w ? "start" : "end")
.text(
`input: ${d3.format("0.3f")(
xScale.invert(evt.layerX)
)}, prediction: ${d3.format("0.3f")(yScale.invert(evt.layerY))}`
);
}
}
})
.on("mouseleave", function () {
chart.selectAll(".predict").remove();
});

div.attr("a", regress.a);
div.attr("b", regress.b);

return div.node();
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more