Public
Edited
Dec 6, 2023
Insert cell
Insert cell
Insert cell
{
const svg = d3.create("svg").attr("width", width).attr("height", height);

// Axis
svg
.append("g")
.attr("transform", `translate(0,${height - margin.bottom})`)
.call(xAxis);

svg.append("g").attr("transform", `translate(${margin.left}, 0)`).call(yAxis);

// Bubbles
const bubbles = svg
.selectAll("bubbles")
.data(data)
.enter()
.append("circle")
.attr("cx", (d) => xScale(d["Income per person"]))
.attr("cy", (d) => yScale(d["Life expectancy "]))
// .attr("r", 4.2)
.attr("r", (d) => radiusScale(d.Population))
.attr("fill", (d) => findColors(d.region))
.style("fill-opacity", 0.74)
.attr("stroke", "#555")
.on("mousemove", function (event, d, index) {
toolTip
.style("display", "block")
.html(`<p>${d.name}<br>${d.Population}</p><div></div>`);

toolTip
.style(
"left",
event.pageX - d3.select(".toolTip").node().offsetWidth + "px"
)
.style("top", event.pageY - 52 + "px");

d3.select(this)
.style("stroke-width", 3)
//.style("fill", "#fff")
.style("fill-opacity", 0.95);
})
.on("mouseout", function () {
toolTip.style("display", "none");

d3.select(this)
.style("stroke-width", 1)
.style("fill", (d) => findColors(d.region))
.style("fill-opacity", 0.74);
});

// Tooltip
const toolTip = d3.select("body").append("div").attr("class", "toolTip");

getLegend(svg, "vertical", 18, 7, 5, domains.length);

return svg.node();
}
Insert cell
Insert cell
findColors = (region) => {
let color;
if (region === "asia") {
color = "#E74F2A";
} else if (region === "europe") {
color = "#FFE473";
} else if (region === "africa") {
color = "#234FBF";
} else if (region === "americas") {
color = "#00835D";
}
return color;
}
Insert cell
Insert cell
yAxis = d3.axisLeft(yScale) //.ticks(5)
Insert cell
Insert cell
xAxis = d3
.axisBottom(xScale)
.tickFormat(d3.format("~s")) //숫자를 간결하게 표현하기 위한 포매팅 방식 (K, M)
.tickValues([500, 1000, 2000, 4000, 8000, 16000, 32000, 64000])
Insert cell
Insert cell
yScale = d3
.scaleLinear()
.domain(d3.extent(data, (d) => d["Life expectancy "]))
.range([height - margin.bottom, margin.top])
Insert cell
xScale = d3
.scaleLog()
// .domain(d3.extent(data, (d) => d["Income per person"]))
.domain([500, d3.max(data, (d) => d["Income per person"])])
// .domain([0, d3.max(data, (d) => d["Income per person"])])
.range([margin.left, width - margin.right])
Insert cell
radiusScale = d3
.scaleSqrt()
.domain([0, d3.max(data, (d) => d.Population)])
.range([0, 50])
Insert cell
margin = ({ top: 20, right: 100, bottom: 60, left: 60 })
Insert cell
height = 540
Insert cell
Insert cell
Insert cell
[...new Set(data.map((d) => d.region))]
Insert cell
Insert cell
data = life_expectancy
.map((d) => {
d["Income per person"] = gdp_per_capita.find((g) => g.name === d.name)[
"Income per person"
];
d.Population = population.find((p) => p.name === d.name).Population;
d.region = region.find((r) => r.name === d.name).four_regions;
return d;
})
.sort((a, b) => b.Population - a.Population)
Insert cell
life_expectancy = d3
.csvParse(
await FileAttachment("gapminder_lifeExpectancy.csv").text(),
d3.autoType
)
.filter((d) => d.time === 2022)
Insert cell
gdp_per_capita = d3
.csvParse(
await FileAttachment("gapminder_gdpPerCapita.csv").text(),
d3.autoType
)
.filter((d) => d.time === 2022)
Insert cell
population = d3
.csvParse(
await FileAttachment("gapminder_population.csv").text(),
d3.autoType
)
.filter((d) => d.time === 2022)
Insert cell
region = d3.csvParse(
await FileAttachment("gapminder_region.csv").text(),
d3.autoType
)
Insert cell
// Vertical and horizontal Legend
function getLegend(svg, direction, key_size, item_padding, text_x_offset, classes){
const legend_height = classes * (key_size + item_padding);

// Legend as a group
const legend = svg.append("g")
// Apply a translation to the entire group
.attr("transform", `translate(${width/1.09}, ${legend_height})`)
// Boxes
legend
.selectAll("boxes")
.data(domains)
.enter()
.append("rect")
.attr("x", 0)
.attr("y", (d, i) => (i * (key_size + item_padding)))
.attr("width", key_size)
.attr("height", key_size)
.style("fill", (d) => findColors(d));
// Labels
legend
.selectAll("labels")
.data(domains)
.enter()
.append("text")
.attr("x", key_size)
.attr("y", (d, i) => i * (key_size + item_padding))
.attr("dx", text_x_offset)
.attr("dy", ".5em")
.text((d) => d)
.attr("text-anchor", "left")
.style("alignment-baseline", "middle")
.style("font-family", "sans-serif")
.style("font-size", key_size+"px");

}

Insert cell
domains = ["asia", "americas","africa","europe"];
Insert cell
Insert cell
html`<style>

.toolTip {
position: absolute;
background-color: #A3E2B5;
padding: 4px 10px;
font-size: 21px;
border: .85px solid #333;
border-radius: 4px;
font-family: arial;
font-weight: 500;
line-height: 1.2;
letter-spacing: -.5px;
}
</style>`
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more