Public
Edited
Nov 12, 2022
1 fork
4 stars
Insert cell
Insert cell
{
const svg = d3.create("svg").attr("viewBox", [0, 0, width+margin.left+margin.right, height + margin.top + margin.bottom]).style("background", "#efefe7")
const wrapper = svg.append("g").attr("transform", `translate(${margin.left}, ${margin.top})`)

// Geo Projection
let projection = d3.geoMercator().fitSize([innerWidth, innerHeight], phl_regions2)
let geoGenerator = d3.geoPath().projection(projection)
let regions = wrapper.selectAll('region').data(phl_regions2.features)

let areas = regions.enter().append("path").attr("class", "areas").attr("d", d => geoGenerator(d)).attr("fill", "gray").attr("stroke", "white").attr("stroke-width", 1)

const circles = wrapper.selectAll('circle').data(data).join('circle').attr("transform", d => `translate(${d.x}, ${d.y})`).attr("r", 2).attr("fill", "red")

return svg.node()
}
Insert cell
_philvolcs = FileAttachment("2021_philvolcs.csv").csv()
Insert cell
phl_regions2 = FileAttachment("phl_regions2.geojson").json()
Insert cell
parseDate = d3.utcParse("%Y-%m-%d") //2021-01-31
Insert cell
height = 900
Insert cell
width = 600
Insert cell
margin = ({"top":100, "bottom":50, "left":30, "right":30})
Insert cell
innerHeight = height - margin.top - margin.bottom
Insert cell
innerWidth = width - margin.left - margin.right
Insert cell
projection = d3.geoMercator().translate([margin.left, margin.top]).fitSize([innerWidth, innerHeight], phl_regions2)
Insert cell
pathGenerator = d3.geoPath(projection)
Insert cell
data = ( await FileAttachment("2021_philvolcs.csv").csv()).map(d => {
let geoJsonPoint = {
type: "Point",
coordinates: [d.lat, d.long]
}

let t = projection([parseFloat(d.long), parseFloat(d.lat)]);
console.log(d.lat, d.long, t)
return {...d, "x": t[0], "y":t[1], date: parseDate(d.date)}
}).sort((a, b) => a.date - b.date)
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more