Public
Edited
Dec 20, 2023
2 forks
Insert cell
Insert cell
viewof zoom = Inputs.range([0, 1], {label: "longitude", step: .001, value: .23})
Insert cell
viewof Floor_water = Inputs.toggle({label: "Floor water in 50 years"})
Insert cell
Floor_water
Insert cell
Select_asset = dgi.filter: (dgi, (d) => d3.asset_type("asset_type"))
Insert cell
Plot.plot({width: 3000,height:3000,
projection: {type: "orthographic",rotate: [80, -34], domain:circle},
r: {transform: (d) => Math.pow(10, d)}, // convert Richter to amplitude
style: "overflow: visible;", // allow dots to escape
marks: [
//Plot.geo(datasetwithdataproperty to create cloropleth, {fill: d => color(d.properties.POPULATION), fillOpacity: 0.2, type:"md"}),
// Plot.geo(_census_tracts__tabular_20231105, {fill: d => color(d.properties.POPULATION), fillOpacity: 0.2, type:"md"}),
Plot.geo(combinedHeatIndex,{fill: d => color2(d.properties.HVImedquin), fillOpacity:1,
//channels: {HVImedquin: (d) => d.properties.HVImedquin}, // Display asset_type in the tooltip
//title:(d) =>
//{d.HVImedquin}
}),
Plot.geo(combined, {fill: d => color(d.properties.Income), fillOpacity:0.5,
//channels: { Income: (d) => d.properties.Income }, // Display asset_type in the tooltip
// tip:true},
}),
Plot.geo(archivedParksProperties ,
{fill: "green",
stroke:"green",
fillOpacity: 1,
type:"md",
//channels: { typecatego: (d) => d.properties.typecatego}, // Display asset_type in the tooltip
//tip:true
}),
Plot.dot(dgi.features, {x: (d) => d.geometry.coordinates[0], y: (d) => d.geometry.coordinates[1],
r: 0.6,
stroke: "cyan",
fill: "none",
fillOpacity: 0.25,
// channels: { asset_type: (d) => d.properties.asset_type }, // Display asset_type in the tooltip
//tip: true
}),
Plot.geo(Flood, {
fill: "blue",
//stroke:"blue","strokeWidth":3,
fillOpacity: 0.6,
type: "md" }),
Plot.geo(censusTractsTabular_20231107 ,
{fill: "none",
stroke:"black","strokeWidth":0.25,
fillOpacity: 0.55,
type:"md"}),
]
//Floor_water.addEventListener("change", () => {
//FloodLayer.style("display", Floor_water.value ? "block" : "none");});
})
Insert cell
shoreline = FileAttachment("Shoreline.geojson")
Insert cell
archivedParksProperties = FileAttachment("ARCHIVED - Parks Properties.geojson").json()
Insert cell
censusTractsTabular_20231107 = FileAttachment("2020 Census Tracts - Tabular_20231107.geojson").json()
Insert cell
nyc_census_tracts@1.csv
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
combined = {

var geo = censusTractsTabular_20231107.features
var data = nyc_census_tracts1

var combinedData = []
for (let i = 0; i < geo.length; i++) {
var lineName = Number(geo[i].properties.geoid)//dataset w/ lines, specify properties that has match key
for (let k = 0; k < data.length; k++) {
var dataName = data[k].CensusTract//none spatial dataset, specify properties that have match
if(lineName == dataName){//console.log('match')

combinedData.push({type:'Feature',properties:data[k],geometry:geo[i].geometry})
}
}
}

return {type: 'FeatureCollection',features:combinedData}}

Insert cell
Flood = FileAttachment("Sea Level Rise Maps (2050s 500-year Floodplain).geojson").json()
Insert cell
color = d3.scaleQuantize().domain([5000, 120000]).range(d3.schemePuBu[9]);
Insert cell
color2 = d3.scaleQuantize().domain([1,5]).range(d3.schemeYlOrRd[9]);
Insert cell
boroughs = FileAttachment("boroughs.geojson")
Insert cell
circle = d3.geoCircle().center([-73.9, 40.68]).radius(zoom)()
Insert cell
dgi = FileAttachment("DEP Green Infrastructure.geojson").json()
Insert cell
data-P5pGy.csv
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
combinedHeatIndex = {

var geo = censusTractsTabular_20231107.features
var data = dataP5pgy

var combinedData = []
for (let i = 0; i < geo.length; i++) {
var lineName = String(geo[i].properties.nta2020)//dataset w/ lines, specify properties that has match key
for (let k = 0; k < data.length; k++) {
var dataName = data[k].NTACode//none spatial dataset, specify properties that have match
if(lineName == dataName){//console.log('match')

combinedData.push({type:'Feature',properties:data[k],geometry:geo[i].geometry})
}
}
}

return {type: 'FeatureCollection',features:combinedData}}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more