Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
biking = [
{ day: "Monday", miles: 6.2, time_hr: 0.53 },
{ day: "Tuesday", miles: 10.0, time_hr: 1.02 },
{ day: "Wednesday", miles: 4.9, time_hr: 0.48 },
{ day: "Thursday", miles: 0, time_hr: 0 },
{ day: "Friday", miles: 18.5, time_hr: 1.59 },
{ day: "Saturday", miles: 7.3, time_hr: 0.86 },
{ day: "Sunday", miles: 0, time_hr: 0 }
]
Insert cell
Insert cell
// Find the miles biked on Friday:

biking[4].miles

// Alternatively: biking[biking.map(d => d.day).indexOf("Friday")].miles
Insert cell
Insert cell
// For each day, find the average biking speed.
biking.map(x => x.miles / x.time_hr)
Insert cell
Insert cell
Insert cell
Insert cell
// Only keep objects (rows) where miles is greater than 10:
biking.filter(x => x.miles > 10)
Insert cell
Insert cell
// Keep rows for Saturday and Monday:
biking.filter(x => x.day == "Saturday" || x.day == "Monday")
Insert cell
Insert cell
// Keep rows where miles is less than 10 AND time_hr is less than 0.5:
biking.filter(x => x.miles < 10 & x.time_hr < 0.5)
Insert cell
Insert cell
// Keep rows *except* for Thursday:
biking.filter(x => x.day !== "Thursday")
Insert cell
Insert cell
Insert cell
// Keep all existing properties; add a new one named 'km' with miles converted to kilometers;
biking_km = biking.map(d => ({...d, km: d.miles * 1.61})) // uses the spread element

Insert cell
Insert cell
Insert cell
carData
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
Insert cell
carTable = aq.from(carData)
Insert cell
Insert cell
// Add your data wrangling (using Arquero) here:

carTable
.select("name","economy (mpg)","cylinders","weight (lb)")
.filter(x => x.cylinders ==4)
.view()

Insert cell
Insert cell
Insert cell
Insert cell
world_bank_data.csv
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
Insert cell
// Use Array map and filter to do the wrangling steps above, storing the output as wb2019:

wb2019 = wb.map(d => ({country: d.country,
year: d.year,
co2: d.co2,
region: d.region,
co2_thousands: d.co2 / 1000})).filter(d => d.year == 2019)
Insert cell
Insert cell
Insert cell
wbTable = aq.from(wb)
Insert cell
Insert cell
// Use Arquero verbs to do the same wrangling steps:
wbEAPArquero = wbTable
.select("country", "year", "co2", "region")
.derive({ co2_thousands: (d) => d.co2 / 1000 }) // if you only have one parameter, you dont need (d)
.filter(d => d.year == 2019)
.view()
Insert cell
Insert cell
Insert cell
// Create a chart of the top 10 CO2 emitting countries in 2019 (using the wb2019 array created above)

Insert cell
Plot.plot({
marks: [
Plot.barX(wb2019, {x: "co2", y: "country", sort: {y: "x", reverse: true, limit:10}}),
Plot.ruleX([0])
]
})
Insert cell
Insert cell
Insert cell
Insert cell
carData = cars
Insert cell
import {aq, op} from "@uwdata/arquero"
Insert cell
import { showMe } from "@observablehq/show-me"
Insert cell

Purpose-built for displays of data

Observable is your go-to platform for exploring data and creating expressive data visualizations. Use reactive JavaScript notebooks for prototyping and a collaborative canvas for visual data exploration and dashboard creation.
Learn more