Public
Edited
May 7, 2024
Insert cell
Insert cell
Insert cell
vega({
data: {values: solved_sundays},
transform: [{density: 'elapsed_minutes', bandwidth: bandwidth}],
width: 400, height: 200,
mark: 'area',
encoding: {
x: { field: 'value', type: 'quantitative', title: 'solve time (mins)'},
y: { field: 'density', type: 'quantitative', scale: {domainMax: 0.06}},
},
title: "Sunday solve times",
})
Insert cell
Insert cell
data = data_raw.map(d => ({
...d,
elapsed_seconds: +d.elapsed_seconds,
elapsed_minutes: +d.elapsed_seconds / 60,
solved: !!+d.solved,
}))
Insert cell
solved_sundays = data.filter(d => d.day === "Sun" && d.solved)
Insert cell
cumulative = sql`
SELECT
ROW_NUMBER() AS cum,
elapsed_minutes
FROM ${{solved_sundays}}
ORDER BY elapsed_minutes
`
Insert cell
cumulative
X
elapsed_minutes
Y
cum
Color
Size
Facet X
Facet Y
Mark
Auto
Type Chart, then Shift-Enter. Ctrl-space for more options.

Insert cell
vega({
data: {values: cumulative},
width: 400, height: 200,
mark: 'line',
encoding: {
x: { field: 'elapsed_minutes', type: 'quantitative', title: 'solve time (mins)'},
y: { field: 'cum', type: 'quantitative', scale: {domainMax: 100}},
},
title: "Sunday solve times",
})
Insert cell
vega({
data: {values: solved_sundays},
width: width * 0.9,
mark: {type: "circle", size: 70},
encoding: {
x: { type: 'temporal', field: 'date', title: 'date'},
y: { type: 'quantitative', field: 'elapsed_minutes'},
tooltip: { field: 'date', type: 'temporal' },
},
})
Insert cell
import {sql} from '@joshuahhh/sql'
Insert cell
import {table} from '@tmcw/tables/2'
Insert cell
table(data, {pageSize: 5})
Insert cell
mondayCumulativeTimes = sql`
WITH mondays AS (
SELECT *, ROWNUM() AS num
FROM ${{data}}
WHERE day == 'Mon' AND solved == true
ORDER BY elapsed_seconds
)
SELECT
mondays.date, mondays.elapsed_minutes
FROM mondays, mondays AS mon2
GROUP BY mondays.date
`
Insert cell
Insert cell
vega({
data: {values: mondayCumulativeTimes},
width: 400, height: 200,
mark: 'area',
encoding: {
x: { field: 'elapsed_minutes', type: 'quantitative', title: 'solve time (mins)'},
y: { field: 'cum', type: 'quantitative', scale: {domainMax: 100}},
},
title: "Monday solve times",
})
Insert cell
vega({
data: {values: data.filter(d => d.day === "Mon" && d.solved)},
transform: [{
sort: [{field: "elapsed_minutes"}],
window: [{op: "count", field: "count", as: "cum"}],
frame: [null, 0]
}],
width: 400, height: 200,
mark: 'area',
encoding: {
x: { field: 'elapsed_minutes', type: 'quantitative', title: 'solve time (mins)'},
y: { field: 'cum', type: 'quantitative', scale: {domainMax: 100}},
},
title: "Monday solve times",
})
Insert cell
import {Table} from "@observablehq/inputs"
Insert cell
Table(solved_sundays)
Insert cell
vega = {
const v = window.vega = await require("vega@3");
const vl = window.vl = await require("vega-lite@2");
const ve = await require("vega-embed@6");
async function vega(spec, options) {
const div = document.createElement("div");
div.value = (await ve(div, spec, options)).view;
return div;
}
vega.changeset = v.changeset;
return vega;
}
Insert cell
import {slider} from "@jashkenas/inputs"
Insert cell
d
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more