Public
Edited
Nov 9, 2023
Insert cell
Insert cell
poll = FileAttachment("poll.log").csv({ typed: true })
Insert cell
Plot.plot({
inset: 8,
grid: true,
color: {
legend: true
},
marks: [
Plot.line(poll, { x: "Date", y: (d) => d["FirstByteMs"] + d["TransferMs"] })
]
})
Insert cell
primaryswitch = FileAttachment("poll.log.primaryswitch.csv").csv({
typed: true
})
Insert cell
Plot.plot({
inset: 8,
grid: true,
color: {
legend: true
},
marks: [
Plot.line(primaryswitch, {
x: "Date",
y: (d) => d["FirstByteMs"] + d["TransferMs"]
})
]
})
Insert cell
killva = FileAttachment("poll.log.3").csv({
typed: true
})
Insert cell
Plot.plot({
inset: 8,
grid: true,
color: {
legend: true
},
marks: [
Plot.line(killva, {
x: "Date",
y: (d) => d["FirstByteMs"] + d["TransferMs"]
})
]
})
Insert cell
staging1 = FileAttachment("transition_contd_2.csv").csv({
typed: true
})
Insert cell
Plot.plot({
inset: 8,
grid: true,
color: {
legend: true
},
marks: [
Plot.line(staging1, {
x: "Date",
y: (d) => d["FirstByteMs"] + d["TransferMs"]
})
]
})
Insert cell
switchleader = FileAttachment("switchleader.csv").csv({
typed: true
})
Insert cell
Plot.plot({
inset: 8,
grid: true,
color: {
legend: true
},
marks: [
Plot.line(switchleader, {
x: "Date",
y: (d) => d["FirstByteMs"] + d["TransferMs"]
})
]
})
Insert cell
dropca = FileAttachment("dropca.csv").csv({
typed: true
})
Insert cell
Plot.plot({
inset: 8,
grid: true,
color: {
legend: true
},
marks: [
Plot.line(dropca, {
x: "Date",
y: (d) => d["FirstByteMs"] + d["TransferMs"]
})
]
})
Insert cell
// the script used to generate the data follows:
{
// Output columns:
// - date/time that request was fired
// - HTTP status code
// - time to first byte (milliseconds)
// - time from first byte to last byte
//
// URL points to the ReadMe docs' "Best Practices" page
// readmebackup.com uses MongoDB Atlas database readme-support
const URL = '<censored>/main/docs/best-practices';
const AUTH_VALUE = '<censored>';
async function pollOnce() {
const currentTs = Date.now();
const currentMs = currentTs - Math.floor(currentTs / 1000) * 1000;
const sleepMs = 1000 - currentMs;
setTimeout(pollOnce, sleepMs);
const t0 = Date.now();
const d = new Date();
const resp = await fetch(URL, { headers: { Authorization: AUTH_VALUE }, redirect: 'manual' });
const t1 = Date.now();
await resp.text();
const t2 = Date.now();
const output = [d.toISOString(), resp.status, t1 - t0, t2 - t1];
console.log(output.join(','));
}
console.log('Date,Status,FirstByteMs,TransferMs');
pollOnce();
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more