Published
Edited
Feb 27, 2020
2 forks
Importers
24 stars
Also listed in…
Libraries
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
{
if (!segmentation) return "No segments computed yet";
let { curves, imgData } = segmentation;
let canvas = texturePack(curves, imgData, showTextureBoxes).texture
return canvas
}
Insert cell
Insert cell
mutable bgPixAddress = ({x:-1,y:-1})
Insert cell
mutable backgroundColor = [0,0,0,0]
Insert cell
viewof distThreshold = new View(10)
Insert cell
viewof operation = new View("floodByColor")
Insert cell
viewof subsampleTol = new View (0)
Insert cell
viewof minArea = new View (1)
Insert cell
viewof drawSettings = new View(['maskedImage', 'polygons'])
Insert cell
viewof showTextureBoxes = new View(false)
Insert cell
viewof inpaintAlgorithm = new View('none')
Insert cell
viewof animateSegments = new View(true)
Insert cell
comment('The segmented image, mask and polygons')
Insert cell
mutable segmentation = null
Insert cell
Insert cell
comment(`Creates a mask where pixels similar to the background color are made transparent`)
Insert cell
bgColorMask = function (pixelData, bgPixel, distThreshold = 10) {
let [R,G,B,A] = bgPixel;
let src = pixelData.data;
let maskData = new ImageData(pixelData.width, pixelData.height)
let dst = maskData.data;
let count = 0;
let threshold2 = distThreshold*distThreshold
for (let i = 0; i < src.length; i += 4) {
let [dr,dg,db,da] = [src[i]-R,src[i+1]-G,src[i+2]-B,src[i+3]-A];
let dist = dr*dr+dg*dg+db*db+da*da;
if (dist < threshold2) {
[dst[i],dst[i+1],dst[i+2],dst[i+3]] = [0,0,0,0];
} else {
[dst[i],dst[i+1],dst[i+2],dst[i+3]] = [0,0,0,255];
count++;
}
};
return maskData
}
Insert cell
comment('Creates a mask by flood-filling by color similarity starting with a seed background pixel at `x,y`')
Insert cell
floodFillMask = function (pixelData, x, y, distThreshold = 10) {
let [w,h] = [pixelData.width, pixelData.height];
let src = pixelData.data;
let maskData = new ImageData(w,h);
let dst = maskData.data;
for (let i = 0; i < dst.length; i+=4) dst [i+3] = 255;
let visited = new Uint8Array(src.length);
let count = 0;
let stack = [[x,y]];
let threshold2 = distThreshold*distThreshold
while (stack.length) {
let [x,y] = stack.pop();
let i = (w*y+x)*4;
visited[i] = true;
count++;
let [R,G,B,A] = src.slice(i,i+4);
let dist = (j) => {
let [dr,dg,db,da] = [src[j]-R,src[j+1]-G,src[j+2]-B,src[j+3]-A];
return dr*dr+dg*dg+db*db+da*da;
}
dst[i+3] = 0;
if (x > 0 && !visited[i-4] && dist(i-4) < threshold2) stack.push([x-1,y]);
if (x+1 < w && !visited[i+4] && dist(i+4) < threshold2) stack.push([x+1,y]);
if (y > 0 && !visited[i-w*4] && dist(i-w*4) < threshold2) stack.push([x,y-1]);
if (y+1 < h && !visited[i+w*4] && dist(i+w*4) < threshold2) stack.push([x,y+1]);
}
return maskData
}
Insert cell
Insert cell
imageEdges = function (pixelData, distThreshold = 10) {
let [w,h] = [pixelData.width, pixelData.height];
let src = pixelData.data;
let maskData = new ImageData(w,h);
let dst = maskData.data;
let threshold2 = distThreshold*distThreshold
let dist = function(i,j) {
let [dr,dg,db,da] = [src[j]-src[i],src[j+1]-src[i+1],src[j+2]-src[i+2],src[j+3]-src[i+3]];
return dr*dr+dg*dg+db*db+da*da;
}
for (let x = 1; x < w-1; x++) {
for (let y = 1; y < h-1; y++) {
let i = (w*y+x)*4;
let maxdist = Math.max(dist(i,i-w*4),dist(i,i+w*4),dist(i,i+4),dist(i,i-4));
if (maxdist>=threshold2) dst[i+3] = 255;
}
}
return maskData
}
Insert cell
Insert cell
floodFillEdgeMask = function (pixelData, x,y, distThreshold = 10) {
let [w,h] = [pixelData.width, pixelData.height];
let maskData = new ImageData(w,h);
let src = pixelData.data;
let dst = maskData.data;
let edge = erode(imageEdges(pixelData, distThreshold)).data;
for (let i = 0; i < dst.length; i+=4) dst [i+3] = 255;
let visited = new Uint8Array(src.length);
let count = 0;
let stack = [[x,y]];
while (stack.length) {
let [x,y] = stack.pop();
let i = (w*y+x)*4;
visited[i] = true;
count++;
dst[i+3] = 0;
if (x > 0 && !visited[i-4] && edge[i-4+3]==0) stack.push([x-1,y]);
if (x+1 < w && !visited[i+4] && edge[i+4+3]==0) stack.push([x+1,y]);
if (y > 0 && !visited[i-w*4] && edge[i-w*4+3]==0) stack.push([x,y-1]);
if (y+1 < h && !visited[i+w*4] && edge[i+w*4+3]==0) stack.push([x,y+1]);
}
return maskData
}
Insert cell
Insert cell
Insert cell
blurInpaint = function (pixelData, maskData, blurSteps = 3) {
let [w,h] = [pixelData.width, pixelData.height];
console.assert(w == maskData.width && h == maskData.height);
let src = new Uint32Array (pixelData.data.buffer);
let result = new ImageData(w,h);
let dst = new Uint32Array (result.data.buffer);
let mask = new Uint32Array (maskData.data.buffer);
let size = w*h;
let queue = []
let visited = new Uint8Array(size);
// Set up queue and visited
for (let x = 1; x+1 < w; x++) {
for (let y = 1; y+1 < h; y++) {
let i = y*w+x;
dst[i] = src[i];
if (mask[i]) dst[i] = 0;
else dst[i] = src[i];
if (mask[i] &&
!(mask[i-w-1] && mask[i-w] && mask[i-w+1] &&
mask[i-1] && mask[i+1] &&
mask[i+w-1] && mask[i+w] && mask[i+w+1])) {
queue.push (i);
}
}
}
// A gaussian blur function
let gauss = pixels => {
let newValues = new Uint32Array(pixels.length);
let rgbaWord = new Uint32Array(1);
let rgba = new Uint8Array(rgbaWord.buffer);
let n = 0;
for (let i of pixels) {
let [r,g,b] = [0,0,0];
let sum = 0;
for (let [j,s] of [[i-w-1,0.073235],[i-w, 0.176765],[i-w+1,0.073235],
[i-1, 0.176765],[i+1, 0.176765],
[i+w-1, 0.073235],[i+w, 0.176765],[i+w+1,0.073235]]) {
// for (let [j,s] of [[i-w-1,1],[i-w, 1],[i-w+1,1],
// [i-1, 1],[i+1, 1],
// [i+w-1, 1],[i+w, 1],[i+w+1,1]]) {
if (!mask[j] || (visited[j] > 0 && visited[j] < 255)) {
let k = j * 4;
r += result.data[k++]*s;
g += result.data[k++]*s;
b += result.data[k++]*s;
sum += s;
}
}
if (sum > 0) {
let k = i*4;
rgba.set([Math.round(r/sum),Math.round(g/sum),Math.round(b/sum),255]);
//rgba.set([r/sum,g/sum,b/sum,255]);
newValues[n] = rgbaWord[0];
}
n++;
}
n = 0;
for (let i of pixels) {
dst[i] = newValues[n++];
visited[i] = 1;
}
}

// Inpaint pixels in queue and find neighbor masked pixels
let first = 0;
for (let run = 1; run <= width && queue.length - first > 0; run++) {
let n = queue.length;
gauss(queue.slice(first,n));
for (let q = first; q < n; q++) {
let i = queue[q];
for (let j of [i-w-1, i-w, i-w+1,
i-1, i+1,
i+w-1, i+w, i+w+1]) {
if (visited[j] == 0 && mask[j]) {
queue.push (j);
visited[j] = 255;
}
}
}
first = n;
}
while (blurSteps--) gauss(queue);
return result
}
Insert cell
Insert cell
quadtreeInpaint = function (pixelData, maskData) {
let [w,h] = [pixelData.width, pixelData.height];
console.assert(w == maskData.width && h == maskData.height);
let k = Math.ceil(Math.log2(Math.max(w,h)));
let n = 1<<k;
let base = new ImageData(n,n);
let src = new Uint32Array (pixelData.data.buffer);
let dst = new Uint32Array (base.data.buffer);
let mask = new Uint32Array (maskData.data.buffer);
// Set up base layer
for (let x = 0; x < w; x++) {
for (let y = 0; y < h; y++) {
let i = y*w+x;
let j = y*n+x;
if (!mask[i]) dst[j] = src[i];
}
}
// Function to average 2x2 groups of pixels into a single pixel
let halve = (original,n) => {
let m = n/2;
let half = new ImageData(m,m);
let src = new Uint32Array (original.data.buffer);
let dst = new Uint32Array (half.data.buffer);
let rgbaWord = new Uint32Array(1);
let rgba = new Uint8Array(rgbaWord.buffer);
let average = (words) => {
let [R,G,B,A] = [0,0,0,0];
let sum = 0;
for (let w of words) {
rgbaWord [0] = w;
if (rgba[3]) {
sum++;
R += rgba[0];
G += rgba[1];
B += rgba[2];
//break;
}
}
if (sum>0) {
rgba.set([Math.round(R/sum),Math.round(G/sum),Math.round(B/sum),255])
}
else {
rgbaWord [0] = 0
}
return rgbaWord [0];
}
for (let x = 0; x < m; x++) {
for (let y = 0; y < m; y++) {
let words = [src[2*y*n+2*x],src[2*y*n+2*x+1],
src[2*y*n+n+2*x],src[2*y*n+n+2*x+1]]
if (x > 0 && y > 0) {
words.push (src[2*y*n+2*x-1],src[2*y*n+n+2*x-1],
src[2*y*n-n+2*x],src[2*y*n-n+2*x+1],src[2*y*n-n+2*x-1])
}
dst[y*m+x] = average(words)
}
}
return half
}
// Replace original pixels with pixels of halved image if masked
let double = (original, half, n) => {
let m = n/2;
let src = new Uint32Array (original.data.buffer);
let dst = new Uint32Array (half.data.buffer);
let rgbaWord = new Uint32Array(1);
let rgba = new Uint8Array(rgbaWord.buffer);
let weightedAverage = (words_weights) => {
let [R,G,B,A] = [0,0,0,0];
let sum = 0;
for (let [w,p] of words_weights) {
rgbaWord [0] = w;
if (rgba[3]) {
sum+=p;
R += rgba[0]*p;
G += rgba[1]*p;
B += rgba[2]*p;
//break;
}
}
if (sum>0) {
rgba.set([Math.round(R/sum),Math.round(G/sum),Math.round(B/sum),255])
}
else {
rgbaWord [0] = 0
}
return rgbaWord [0];
}
for (let x = 0; x < m; x++) {
for (let y = 0; y < m; y++) {
let fallback = dst[y*m+x];
if (x+1 < m && y+1 < m) {
fallback = weightedAverage ([[fallback,9], [dst[y*m+x+1],4], [dst[y*m+m+x],4], [dst[y*m+m+x+1],1]])
}
for (let i of [2*y*n+2*x,2*y*n+2*x+1,2*y*n+n+2*x,2*y*n+n+2*x+1]) {
rgbaWord[0] = src[i];
if (rgba[3] == 0) src[i] = fallback;
}
}
}
}
// The algorithm, proper
let pyramid = [base];
let N = n;
for (let i = 0; i < k; i++) {
let top = pyramid[i];
pyramid[i+1] = halve(top,N);
N = N/2;
}
for (let i = k; i > 0; i--) {
let bottom = pyramid[i];
N = N*2;
double (pyramid[i-1],pyramid[i],N)
}
// Build return image
let result = new ImageData(w,h);
let res = new Uint32Array (result.data.buffer);
for (let x = 0; x < w; x++) {
for (let y = 0; y < h; y++) {
let i = y*w+x;
let j = y*n+x;
res[i] = dst[j]
}
}
return result
}
Insert cell
md`## Topological filters`
Insert cell
Insert cell
erode = function (maskData, reference = 0) {
let [w,h] = [maskData.width, maskData.height];
let data = maskData.data;
let newMask = new ImageData(w,h)
let newData = newMask.data;
let i = 3;
let w4 = w*4;
for (let y = 0; y < h; y++) {
for (let x = 0; x < w; x++) {
if (data[i] != reference &&
( (x <= 0 || data[i-4] != reference) &&
(x+1 >= w || data[i+4] != reference) &&
(y <= 0 || data[i-w4] != reference) &&
(y+1 >= h || data[i+w4] != reference))) {
newData[i] = 255-reference;
}
else {
newData[i] = reference;
}
i += 4;
}
}
return newMask
}
Insert cell
Insert cell
dilate = (maskData)=> erode(maskData,255)
Insert cell
Insert cell
Insert cell
function texturePack (curves, imgData, showBoxes = false) {
let tmpCanvas = DOM.canvas (imgData.width, imgData.height, 1);
let tmpCtx = tmpCanvas.getContext("2d");
tmpCtx.putImageData(imgData,0,0);
let pattern = tmpCtx.createPattern(tmpCanvas,"repeat");

let div = html`<div></div>`;
let boxes = curves.map(c => {
let mbr = c.mbr();
let size = mbr.size();
return { sx: mbr.min.x, sy: mbr.min.y, w: size.x, h: size.y, c:c }
})
let rect = potpack(boxes)
let canvas = DOM.canvas (rect.w, rect.h, 1)
let ctx = canvas.getContext("2d")
ctx.imageSmoothingEnabled = false;
ctx.fillStyle = pattern;
for (let box of boxes) {
ctx.setTransform(1, 0, 0, 1, 0, 0); // Reset transform
if (showBoxes) {
ctx.strokeStyle = 'black';
ctx.beginPath();
ctx.rect(box.x,box.y,box.w,box.h);
ctx.stroke();
}
ctx.translate(box.x-box.sx, box.y-box.sy);
ctx.strokeStyle = pattern;
ctx.beginPath()
let {x,y} = box.c[0];
ctx.moveTo(x,y);
for (let {x,y} of box.c) {
ctx.lineTo(x,y)
}
ctx.fill()
ctx.stroke()
}
return { texture: canvas, pieces: boxes }
}
Insert cell
Insert cell
Insert cell
import { bindSliderNumber, bindRadioGroup, bindSelect, bindCheckGroup, bindCheckbox, bindFile, View } from "@esperanc/inline-inputs"
Insert cell
import { comment } from "@esperanc/notebook-css-utilities"
Insert cell
import { Vec, Curve } from "@esperanc/2d-geometry-utils"
Insert cell
Insert cell
import { getCirculations } from "@esperanc/bitmap-tracing"
Insert cell
Insert cell
potpack = require('potpack@1.0.1/index.js')
Insert cell
Insert cell
images = ({ 'basket' : FileAttachment("000R-222.jpg"),
'machine' : FileAttachment("000R-138.jpg"),
'geometry' : FileAttachment("000R-268.jpg")
})
Insert cell
viewof imageName = new View('basket')
Insert cell
mutable img = images[imageName].image()
Insert cell
viewof imgfile = new View(null)
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more