Public
Edited
Feb 11, 2024
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
InputValues = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Insert cell
md `## Graph Plot Setting`
Insert cell
height =700
Insert cell
width =1000
Insert cell
maxLayer =d3.max(data.nodes, d => d.LayerNum)
Insert cell
maxwt = d3.max(data.links, d => Math.abs(d.weight))
Insert cell
maxnode = d3.max(data.nodes, d => Math.abs(d.value))
Insert cell
color = {
const scale = d3.scaleOrdinal(d3.schemeCategory10);
return d => scale(d.LayerNum);
}
Insert cell
drag = simulation => {
function dragstarted(d) {
if (!d3.event.active) simulation.alphaTarget(0.3).restart();
d.fx = d.x;
d.fy = d.y;
}
function dragged(d) {
d.fx = d3.event.x;
d.fy = d3.event.y;
}
function dragended(d) {
if (!d3.event.active) simulation.alphaTarget(0);
d.fx = null;
d.fy = null;
}
return d3.drag()
.on("start", dragstarted)
.on("drag", dragged)
.on("end", dragended);
}
Insert cell
d3 = require("d3@5")
Insert cell
import {select} from "@jashkenas/inputs"
Insert cell
md `## Graph Generation`
Insert cell
NN = d3.json(model)
Insert cell
InputNames = ['phi_0', 'theta_0', 'x_99', 'y_99', 'phi_99', 'theta_99', 'xdot_0', 'ydot_0', 'phidot_0', 'thetadot_0']
Insert cell
Insert cell
function ComputeLayerValues2(input){
let nodes = [];
let links = [];
let connected = [];
for (let i=0; i<NN['weights'][0].length; i++){
let node = {'id': i, 'LayerNum': 0, 'NodeNum': InputNames[i], 'value': input[i], 'valueScaled': input[i]}
nodes.push(node)
}
let currentLayer = [].concat(input)
for (let l=0; l<NN['weights'].length; l++){
const weight = NN['weights'][l]
let bias = [].concat(NN['bias'][l])
let nextLayer =[].concat(bias)
for (let i=0; i<weight.length; i++){
for (let j=0; j<weight[i].length; j++){
nextLayer[j] += weight[i][j]*currentLayer[i]
let link = {'source': l*NN['WidthLimit']+i, 'target': (l+1)*NN['WidthLimit']+j, 'weight': weight[i][j]}
if (Math.abs(link.weight) > 0.001 || NN.WidthLimit<=100){
links.push(link)
if (!connected.includes(link.source)){
connected.push(link.source)
}
if (!connected.includes(link.target)){
connected.push(link.target)
}
}
}
}
for (let k=0; k<nextLayer.length; k++){
let v = nextLayer[k]
if (l !== NN['weights'].length-1){
v = Math.tanh(nextLayer[k]) // apply activation function
let node = {'id': (l+1)*NN['WidthLimit']+k, 'LayerNum': l+1, 'NodeNum': k, 'value': v, 'valueScaled': v}
nodes.push(node)
nextLayer[k] = v
}
if (l === NN['weights'].length-1){
let node = {'id': (l+1)*NN['WidthLimit']+k, 'LayerNum': l+1, 'NodeNum': OutputNames[k], 'value': v, 'valueScaled': Math.tanh(v)}
nodes.push(node)
}
}
currentLayer = [].concat(nextLayer)
}
let nodesConnect = []
for (let n=0; n<nodes.length; n++){
if (connected.includes(nodes[n].id)){
nodesConnect.push(nodes[n])
}
}
return {"nodes": nodesConnect, "links": links};
}
Insert cell
function RecomputeLayerValues2(input){
let nodes = [];
let links = [];
let connected = [];
for (let i=0; i<NN['weights'][0].length; i++){
let node = {'id': i, 'LayerNum': 0, 'NodeNum': InputNames[i], 'value': input[i], 'valueScaled': input[i]}
document.getElementById("node_"+i).setAttribute("r",Math.abs(2*input[i])*10+3);
document.getElementById("node_"+i).setAttribute("fill" , input[i]>0? "#FF8C00":"#00CED1");
document.getElementById("title_"+i).textContent ='layer: 0, node: '+ InputNames[i] + ', value: '+ input[i];
nodes.push(node)
}
let currentLayer = [].concat(input)
for (let l=0; l<NN['weights'].length; l++){
const weight = NN['weights'][l]
let bias = [].concat(NN['bias'][l])
let nextLayer =[].concat(bias)
for (let i=0; i<weight.length; i++){
for (let j=0; j<weight[i].length; j++){
nextLayer[j] += weight[i][j]*currentLayer[i]
let link = {'source': l*NN['WidthLimit']+i, 'target': (l+1)*NN['WidthLimit']+j, 'weight': weight[i][j]}
if (Math.abs(link.weight) > 0.001 || NN.WidthLimit<=100){
links.push(link)
if (!connected.includes(link.source)){
connected.push(link.source)
}
if (!connected.includes(link.target)){
connected.push(link.target)
}
}
}
}
for (let k=0; k<nextLayer.length; k++){
let v = nextLayer[k]
if (l !== NN['weights'].length-1){
v = Math.tanh(nextLayer[k]) // apply activation function
let node = {'id': (l+1)*NN['WidthLimit']+k, 'LayerNum': l+1, 'NodeNum': k, 'value': v, 'valueScaled': v}
var temp = (l+1)*NN['WidthLimit']+k
document.getElementById("node_"+temp.toString()).setAttribute("r" , Math.abs(Math.tanh(nextLayer[k]))*10+3);
document.getElementById("node_"+temp.toString()).setAttribute("fill" , v>0? "#FF8C00":"#00CED1");
document.getElementById("title_"+temp.toString()).textContent ="layer: "+ l+1 +", node: " + k + ', value: '+ Math.tanh(nextLayer[k]);
nodes.push(node)
nextLayer[k] = v
}
if (l === NN['weights'].length-1){
let node = {'id': (l+1)*NN['WidthLimit']+k, 'LayerNum': l+1, 'NodeNum': OutputNames[k], 'value': v, 'valueScaled': Math.tanh(v)}
var temp = (l+1)*NN['WidthLimit']+k
document.getElementById("node_"+temp.toString()).setAttribute("r" , Math.abs(Math.tanh(nextLayer[k]))*10+3);
document.getElementById("node_"+temp.toString()).setAttribute("fill" , v>0? "#FF8C00":"#00CED1");
document.getElementById("title_"+temp.toString()).textContent ="layer: "+ l+1 +", node: " + OutputNames[k] + ', value: '+ Math.tanh(nextLayer[k]);
nodes.push(node)
}
}
currentLayer = [].concat(nextLayer)
}
let nodesConnect = []
for (let n=0; n<nodes.length; n++){
if (connected.includes(nodes[n].id)){
nodesConnect.push(nodes[n])
}
}
return {"nodes": nodesConnect, "links": links};
}
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more