Published
Edited
Mar 1, 2020
9 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
w = width
Insert cell
h = ((im.height / im.width) * w) | 0
Insert cell
// decouple resolution (stipples per area) from ink density (stipple radius)
class Stippling {
constructor(densityGrid, resolutionGrid, minRadius, maxRadius) {
this.densityGrid = densityGrid;
this.resolutionGrid = resolutionGrid;
// assumes widh and height are the same for both grids
this.width = resolutionGrid.width;
this.height = resolutionGrid.height;
this.densityGridExtent = d3.extent(densityGrid.values);
this.resolutionGridExtent = d3.extent(resolutionGrid.values);
this.radiusExtent = [minRadius, maxRadius];
this.resolutionDensityToRadius = d3
.scaleLinear()
.domain(this.resolutionGridExtent)
.range(this.radiusExtent);
this.inkDensityToRadius = d3
.scaleLinear()
.domain(this.densityGridExtent)
.range(this.radiusExtent);
this.threshold = 0.4;
this.delta_threshold = 0.01;
// we initialize the algorithm with random stipples - 1 per 25x25 pixels
this.stipples = this.random_stipples(this.width*this.height / 625 | 0);
}

// returns the thresholds for split and delete
thresholds(radius) {
const area = Math.PI * radius * radius;
return [
(1.0 + this.threshold / 2.0) * area,
(1.0 - this.threshold / 2.0) * area
];
}

// generates `num` random stipples on top of the grid.
random_stipples(num) {
const stipples = new Array(num);
const xran = d3.randomUniform(0, this.width);
const yran = d3.randomUniform(0, this.height);
for (var i = 0; i < num; ++i) {
stipples[i] = [xran(), yran()];
stipples[i].radius = this.radiusExtent[0];
}
return stipples;
}

// performs one iteration of the stippling algorithm
iterate() {
const delaunay = d3.Delaunay.from(this.stipples),
voronoi = delaunay.voronoi([0, 0, this.width, this.height]);

// initialize densities
for(let i = 0; i < this.stipples.length; i++) {
const st = this.stipples[i];
st.radiusDensity = 0;
st.resolutionDensity = 0;
st.moment10 = 0;
st.moment01 = 0;
st.moment11 = 0;
st.moment20 = 0;
st.moment02 = 0;
}

// compute the density and the weighted centroid of each cell
var found = 0;
for(let y = 0, {stipples, width} = this, dValues = this.densityGrid.values, rValues = this.resolutionGrid.values; y < this.height; y++) {
const line = y * width;
for(let x = 0; x < width; x++) {

found = delaunay.find(x, y, found);
const st = stipples[found];
const densityVal = dValues[x + line];
const resolutionVal = rValues[x + line];
st.radiusDensity += densityVal;
st.resolutionDensity += resolutionVal; // Moment00
const xval = x*resolutionVal;
const yval = y*resolutionVal;
st.moment10 += xval
st.moment01 += yval
st.moment11 += x * yval;
st.moment20 += x * xval;
st.moment02 += y * yval;
}
}

const {
// resolutionGridExtent,
// densityGridExtent,
resolutionDensityToRadius,
inkDensityToRadius
} = this;

const resolutionGridMax = this.resolutionGridExtent[1];
let deleted = 0;
let splitted = 0

const newStipples = [];
const {abs, atan2, cos, sin, sqrt, PI } = Math;
for (let i = 0; i < this.stipples.length; i++) {
const polygon = voronoi.cellPolygon(i);
if (!polygon) continue;
const st = this.stipples[i];
const density = st.resolutionDensity;

// determine point size based on average intensity
const area = abs(d3.polygonArea(polygon)) || 1;
const avgDensity = density / area;
const resolutionRadius = resolutionDensityToRadius(avgDensity);

const resolutionArea = PI * resolutionRadius * resolutionRadius * resolutionGridMax;
const splitThreshold = (1.0 + this.threshold / 2.0) * resolutionArea;
const deleteThreshold = (1.0 - this.threshold / 2.0) * resolutionArea;

const renderRadius = inkDensityToRadius(st.radiusDensity / area);

if (density < deleteThreshold) {
deleted++;
} else if (density > splitThreshold) {
// Split
splitted++;
const centroid = d3.polygonCentroid(polygon);
const cx = centroid[0];
const cy = centroid[1];

const dist = sqrt(area / PI) / 2.0;

const x = st.moment20 / density - cx * cx;
const y = 2 * (st.moment11 / density - cx * cy);
const z = st.moment02 / density - cy * cy;

var orientation = atan2(y, x - z) / 2.0;

var deltaX = dist * cos(orientation);
var deltaY = dist * sin(orientation);

st[0] = cx + deltaX;
st[1] = cy + deltaY;
st.radius = renderRadius;
// re-use arrays to reduce GC pressure
centroid[0] -= deltaX;
centroid[1] -= deltaY;
centroid.radius = renderRadius;
newStipples.push(st, centroid);
} else {
// Relax
st[0] = st.moment10 / density;
st[1] = st.moment01 / density;
st.radius = renderRadius;
newStipples.push(st);
}
}

// we increase the threshold with each iteration for faster convergence
this.threshold = this.threshold + this.delta_threshold;
this.stipples = newStipples;
// is done?
return splitted + deleted === 0;
}
}
Insert cell
Insert cell
Insert cell
Insert cell
import {file, number} from "@jashkenas/inputs"
Insert cell
GIF = {
const gif = await require("gif.js@0.2");
const workerScript = await fetch("https://unpkg.com/gif.js@0.2/dist/gif.worker.js")
.then(response => response.blob())
.then(blob => URL.createObjectURL(blob, {type: "text/javascript"}));
function GIF(options) { gif.call(this, {workerScript, ...options}); }
GIF.prototype = Object.create(gif.prototype);
return GIF;
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more