Public
Edited
Mar 2, 2023
1 fork
6 stars
Insert cell
Insert cell
Insert cell
output = createCanvas(width, 512, draw, setup, {css: "background: black"})
Insert cell
Insert cell
// The hardware acceleration of p8g means we're mainly
// limited by how quickly we can iterate over the data.
// To speed that up we use typed arrays that share the same
// backing buffer for storing all data for our particles.
// Another trick is that we don't actually "create" new
// particles, we re-use the same fixed number of items
// in the typed array and recycle a few of the oldest
// each frame. That way we avoid spending a lot of time
// on garbage collection (since nothing is allocated).
function setup(p8g) {
p8g.background(255);

const {width, height} = p8g;
const {random, sin, cos, PI} = Math;
const TAU = 2 * PI;

// Fake a struct by using the same backing buffer
// for a Float32Array and Uint8Array
// - dx, dy, x, and y use float32 values,
// - R, G, and B use uint8 vallues.
// The only tricky part is calculating
// the offsets correctly when using these
// two arrays.
const pos = new Float32Array(totalParticles*5);
const rgb = new Uint8Array(pos.buffer);

// Initialize particles
for (let j = 0; j < totalParticles; j++) {
const idx = j*5;
const phi = TAU * random();
const r = 1 + random() * 10 + random() * 10;
// dx and dy
pos[idx] = r * sin(phi);
pos[idx+1] = r * cos(phi);
// x and y position
pos[idx+2] = random() * width;
pos[idx+3] = random() * height;
// RGB
const RGB_idx = idx * 4 + (4*4);
const t = j*256/totalParticles;
rgb[RGB_idx] = (1 + sin(t*TAU)) * 127.5 | 0// Math.sqrt(random())*255|0;
rgb[RGB_idx+1] = (1 + sin((t + 2/3)*TAU)) * 127.5 | 0// Math.sqrt(random())*255|0;
rgb[RGB_idx+2] = (1 + sin((t + 1/3)*TAU)) * 127.5 | 0// Math.sqrt(random())*255|0;
}

return [pos, rgb];
}
Insert cell
function draw (p8g, [pos, rgb]) {
// fade out
p8g.noStroke();
p8g.noSmooth()
p8g.fill(255, 8);
p8g.rect(0, 0, p8g.width, p8g.height);
updateParticles(p8g, pos, rgb);
drawText(p8g);
}
Insert cell
thrownParticles = Math.max(1, totalParticles/256 | 0);
Insert cell
// updateParticles is again a closure, so that state is maintained between draw calls.
updateParticles = {
let i = 0, pmx = 0, pmy = 0;
return (p8g, pos, rgb) => {
throwParticles(i, pos, p8g.mouseX, p8g.mouseY, pmx, pmy);
fallingParticles(p8g, i, pos, rgb)
pmx = p8g.mouseX;
pmy = p8g.mouseY;
i = (i + thrownParticles) % totalParticles;
}
}
Insert cell
function throwParticles(i, pos, mouseX, mouseY, pmx, pmy) {
// thickness of particles

// mouse delta, used for throwing
const dmx = mouseX - pmx;
const dmy = mouseY - pmy;

const TAU = 2 * Math.PI;
const {random, sin, cos} = Math;

for (let j = 0; j < thrownParticles; j++) {
const idx = ((j+i)%totalParticles)*5;
const phi = TAU * random();
const r = 1 + random() * 10 + random() * 10;
// throw more upwards/downwards, but don't accelerate too much sideways
pos[idx] = r * sin(phi) + dmx * 2;
pos[idx+1] = r * cos(phi) + dmy * 4;
// position at cursor
pos[idx+2] = mouseX;
pos[idx+3] = mouseY;
}
}
Insert cell
function fallingParticles({width, height, stroke, strokeWeight, line}, i, pos, rgb){
// set up thickness of particles
strokeWeight(3);
for (let j = thrownParticles; j < totalParticles; j++) {
const idx = ((j+i)%totalParticles)*5;
let dx = pos[idx] = pos[idx] * 31 / 32;
// damping + gravity
let dy = pos[idx+1] = pos[idx+1] * 31 / 32 + 0.5;
let x = pos[idx+2] + dx;
let y = pos[idx+3] + dy;

// clip to box
if (x < 0) {
dx = -dx;
x = -x;
} else if (x > width) {
dx = -dx;
x = 2*width - x;
}

if (y < 0) {
dy = -dy;
y = -y;
} else if (y > height) {
dy = -dy;
y = 2*height -y;
}

pos[idx] = dx;
pos[idx+1] = dy;
pos[idx+2] = x;
pos[idx+3] = y;
const RGB_idx = idx*4 + (4*4);
stroke(rgb[RGB_idx], rgb[RGB_idx + 1], rgb[RGB_idx + 2]);
line(x-dx, y-dy, x, y);
}
}
Insert cell
drawText = {
let t = 0;
return (p8g) => {
// change text color over time, use sinebow colormap
t = (t+1) & 0x7F;
// set the stroke the color to the opposite side of the sinebow
const ts = t + 0x40 & 0x7F;
const {sin} = Math;
const TAU = Math.PI * 2;
p8g.fill(
(1 + sin(t*0.0078125*TAU)) * 127.5 | 0,
(1 + sin((t*0.0078125 + 2/3)*TAU)) * 127.5 | 0,
(1 + sin((t*0.0078125 + 1/3)*TAU)) * 127.5 | 0
)
p8g.stroke(
(1 + sin(ts*0.0078125*TAU)) * 127.5 | 0,
(1 + sin((ts*0.0078125 + 2/3)*TAU)) * 127.5 | 0,
(1 + sin((ts*0.0078125 + 1/3)*TAU)) * 127.5 | 0
)
p8g.textSize(40);
p8g.strokeWeight(8);
p8g.smooth();
p8g.text(`${totalParticles} particles`, 100, 140);
};
}
Insert cell
Insert cell
// The normal p8g approach would be to assign a draw function to
// the p8g object, but because it's imported through skypack
// at runtime the p8g module is read-only. So instead we use
// this workaround.

createCanvas = {
const p8g = await import('https://cdn.skypack.dev/p8g.js@0.8.3?min');

let canvas = null;
let _draw = () => {};
let _setup = () => {};
let request = null;
let state = null;
return async function createCanvas(width, height, draw = _draw, setup = _setup, opts = {}) {

const {
css
} = opts
// cancel previous loop
if (request) cancelAnimationFrame(request);

if(typeof _setup !== "function") throw new Error("setup is not a function!");
if(typeof _draw !== "function") throw new Error("draw is not a function!")

_setup = setup;
_draw = draw;

if (!canvas) {
canvas = await html`${p8g.createCanvas(width, height)}`;
}
if (typeof css === "string") canvas.style = css;

state = setup(p8g);

// Draw Loop
request = requestAnimationFrame(function tick() {
draw(p8g, state);
request = requestAnimationFrame(tick);
});

invalidation.then(() => cancelAnimationFrame(request));

return canvas;
}
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more