hg_sdf = () => `
////////////////////////////////////////////////////////////////
//
// HELPER FUNCTIONS/MACROS
//
////////////////////////////////////////////////////////////////
#define PI 3.14159265
#define TAU (2.*PI)
#define PHI (sqrt(5.)*0.5 + 0.5)
// Clamp to [0,1] - this operation is free under certain circumstances.
// For further information see
// http://www.humus.name/Articles/Persson_LowLevelThinking.pdf and
// http://www.humus.name/Articles/Persson_LowlevelShaderOptimization.pdf
#define saturate(x) clamp(x, 0., 1.)
// Sign function that doesn't return 0
float sgn(float x) {
return (x<0.)?-1.:1.;
}
vec2 sgn(vec2 v) {
return vec2((v.x<0.)?-1.:1., (v.y<0.)?-1.:1.);
}
float square (float x) {
return x*x;
}
vec2 square (vec2 x) {
return x*x;
}
vec3 square (vec3 x) {
return x*x;
}
float lengthSqr(vec3 x) {
return dot(x, x);
}
// Maximum/minumum elements of a vector
float vmax(vec2 v) {
return max(v.x, v.y);
}
float vmax(vec3 v) {
return max(max(v.x, v.y), v.z);
}
float vmax(vec4 v) {
return max(max(v.x, v.y), max(v.z, v.w));
}
float vmin(vec2 v) {
return min(v.x, v.y);
}
float vmin(vec3 v) {
return min(min(v.x, v.y), v.z);
}
float vmin(vec4 v) {
return min(min(v.x, v.y), min(v.z, v.w));
}
////////////////////////////////////////////////////////////////
//
// PRIMITIVE DISTANCE FUNCTIONS
//
////////////////////////////////////////////////////////////////
//
// Conventions:
//
// Everything that is a distance function is called fSomething.
// The first argument is always a point in 2 or 3-space called <p>.
// Unless otherwise noted, (if the object has an intrinsic "up"
// side or direction) the y axis is "up" and the object is
// centered at the origin.
//
////////////////////////////////////////////////////////////////
float fSphere(vec3 p, float r) {
return length(p) - r;
}
// Plane with normal n (n is normalized) at some distance from the origin
float fPlane(vec3 p, vec3 n, float distanceFromOrigin) {
return dot(p, n) + distanceFromOrigin;
}
// Cheap Box: distance to corners is overestimated
float fBoxCheap(vec3 p, vec3 b) { //cheap box
return vmax(abs(p) - b);
}
// Box: correct distance to corners
float fBox(vec3 p, vec3 b) {
vec3 d = abs(p) - b;
return length(max(d, vec3(0))) + vmax(min(d, vec3(0)));
}
// Same as above, but in two dimensions (an endless box)
float fBox2Cheap(vec2 p, vec2 b) {
return vmax(abs(p)-b);
}
float fBox2(vec2 p, vec2 b) {
vec2 d = abs(p) - b;
return length(max(d, vec2(0))) + vmax(min(d, vec2(0)));
}
// Endless "corner"
float fCorner (vec2 p) {
return length(max(p, vec2(0))) + vmax(min(p, vec2(0)));
}
// Blobby ball object. You've probably seen it somewhere. This is not a correct distance bound, beware.
float fBlob(vec3 p) {
p = abs(p);
if (p.x < max(p.y, p.z)) p = p.yzx;
if (p.x < max(p.y, p.z)) p = p.yzx;
float b = max(max(max(
dot(p, normalize(vec3(1))),
dot(p.xz, normalize(vec2(PHI+1., 1.)))),
dot(p.yx, normalize(vec2(1., PHI)))),
dot(p.xz, normalize(vec2(1., PHI))));
float l = length(p);
return l - 1.5 - 0.2 * (1.5 / 2.)* cos(min(sqrt(1.01 - b / l)*(PI / 0.25), PI));
}
// Cylinder standing upright on the xz plane
float fCylinder(vec3 p, float r, float height) {
float d = length(p.xz) - r;
d = max(d, abs(p.y) - height);
return d;
}
// Capsule: A Cylinder with round caps on both sides
float fCapsule(vec3 p, float r, float c) {
return mix(length(p.xz) - r, length(vec3(p.x, abs(p.y) - c, p.z)) - r, step(c, abs(p.y)));
}
// Distance to line segment between <a> and <b>, used for fCapsule() version 2below
float fLineSegment(vec3 p, vec3 a, vec3 b) {
vec3 ab = b - a;
float t = saturate(dot(p - a, ab) / dot(ab, ab));
return length((ab*t + a) - p);
}
// Capsule version 2: between two end points <a> and <b> with radius r
float fCapsule(vec3 p, vec3 a, vec3 b, float r) {
return fLineSegment(p, a, b) - r;
}
// Torus in the XZ-plane
float fTorus(vec3 p, float smallRadius, float largeRadius) {
return length(vec2(length(p.xz) - largeRadius, p.y)) - smallRadius;
}
// A circle line. Can also be used to make a torus by subtracting the smaller radius of the torus.
float fCircle(vec3 p, float r) {
float l = length(p.xz) - r;
return length(vec2(p.y, l));
}
// A circular disc with no thickness (i.e. a cylinder with no height).
// Subtract some value to make a flat disc with rounded edge.
float fDisc(vec3 p, float r) {
float l = length(p.xz) - r;
return l < 0. ? abs(p.y) : length(vec2(p.y, l));
}
// Hexagonal prism, circumcircle variant
float fHexagonCircumcircle(vec3 p, vec2 h) {
vec3 q = abs(p);
return max(q.y - h.y, max(q.x*sqrt(3.)*0.5 + q.z*0.5, q.z) - h.x);
//this is mathematically equivalent to this line, but less efficient:
//return max(q.y - h.y, max(dot(vec2(cos(PI/3.), sin(PI/3.)), q.zx), q.z) - h.x);
}
// Hexagonal prism, incircle variant
float fHexagonIncircle(vec3 p, vec2 h) {
return fHexagonCircumcircle(p, vec2(h.x*sqrt(3.)*0.5, h.y));
}
// Cone with correct distances to tip and base circle. Y is up, 0 is in the middle of the base.
float fCone(vec3 p, float radius, float height) {
vec2 q = vec2(length(p.xz), p.y);
vec2 tip = q - vec2(0., height);
vec2 mantleDir = normalize(vec2(height, radius));
float mantle = dot(tip, mantleDir);
float d = max(mantle, -q.y);
float projected = dot(tip, vec2(mantleDir.y, -mantleDir.x));
// distance to tip
if ((q.y > height) && (projected < 0.)) {
d = max(d, length(tip));
}
// distance to base ring
if ((q.x > radius) && (projected > length(vec2(height, radius)))) {
d = max(d, length(q - vec2(radius, 0.)));
}
return d;
}
//
// "Generalized Distance Functions" by Akleman and Chen.
// see the Paper at https://www.viz.tamu.edu/faculty/ergun/research/implicitmodeling/papers/sm99.pdf
//
// This set of constants is used to construct a large variety of geometric primitives.
// Indices are shifted by 1 compared to the paper because we start counting at Zero.
// Some of those are slow whenever a driver decides to not unroll the loop,
// which seems to happen for fIcosahedron und fTruncatedIcosahedron on nvidia 350.12 at least.
// Specialized implementations can well be faster in all cases.
//
vec3 GDFVectors[19];
void initGDFVectors() {
GDFVectors[0] = normalize(vec3(1, 0, 0));
GDFVectors[1] = normalize(vec3(0, 1, 0));
GDFVectors[2] = normalize(vec3(0, 0, 1));
GDFVectors[3] = normalize(vec3(1, 1, 1 ));
GDFVectors[4] = normalize(vec3(-1, 1, 1));
GDFVectors[5] = normalize(vec3(1, -1, 1));
GDFVectors[6] = normalize(vec3(1, 1, -1));
GDFVectors[7] = normalize(vec3(0., 1., PHI+1.));
GDFVectors[8] = normalize(vec3(0., -1., PHI+1.));
GDFVectors[9] = normalize(vec3(PHI+1., 0., 1.));
GDFVectors[10] = normalize(vec3(-PHI-1., 0., 1.));
GDFVectors[11] = normalize(vec3(1., PHI+1., 0.));
GDFVectors[12] = normalize(vec3(-1., PHI+1., 0.));
GDFVectors[13] = normalize(vec3(0., PHI, 1.));
GDFVectors[14] = normalize(vec3(0., -PHI, 1.));
GDFVectors[15] = normalize(vec3(1., 0., PHI));
GDFVectors[16] = normalize(vec3(-1., 0., PHI));
GDFVectors[17] = normalize(vec3(PHI, 1., 0.));
GDFVectors[18] = normalize(vec3(-PHI, 1., 0.));
}
// Version with variable exponent.
// This is slow and does not produce correct distances, but allows for bulging of objects.
float fOctahedron(vec3 p, float r, float e) {
float d = 0.;
for (int i = 3; i <= 6; ++i) d += pow(abs(dot(p, GDFVectors[i])), e);
return pow(d, 1./e) - r;
}
float fDodecahedron(vec3 p, float r, float e) {
float d = 0.;
for (int i = 13; i <= 18; ++i) d += pow(abs(dot(p, GDFVectors[i])), e);
return pow(d, 1./e) - r;
}
float fIcosahedron(vec3 p, float r, float e) {
float d = 0.;
for (int i = 3; i <= 12; ++i) d += pow(abs(dot(p, GDFVectors[i])), e);
return pow(d, 1./e) - r;
}
float fTruncatedOctahedron(vec3 p, float r, float e) {
float d = 0.;
for (int i = 0; i <= 6; ++i) d += pow(abs(dot(p, GDFVectors[i])), e);
return pow(d, 1./e) - r;
}
// Version with without exponent, creates objects with sharp edges and flat faces
float fTruncatedIcosahedron(vec3 p, float r, float e) {
float d = 0.;
for (int i = 3; i <= 18; ++i) d += pow(abs(dot(p, GDFVectors[i])), e);
return pow(d, 1./e) - r;
}
float fOctahedron(vec3 p, float r) {
float d = 0.;
for (int i = 3; i <= 6; ++i) d = max(d, abs(dot(p, GDFVectors[i])));
return d - r;
}
float fDodecahedron(vec3 p, float r) {
float d = 0.;
for (int i = 13; i <= 18; ++i) d = max(d, abs(dot(p, GDFVectors[i])));
return d - r;
}
float fIcosahedron(vec3 p, float r) {
float d = 0.;
for (int i = 3; i <= 12; ++i) d = max(d, abs(dot(p, GDFVectors[i])));
return d - r;
}
float fTruncatedOctahedron(vec3 p, float r) {
float d = 0.;
for (int i = 0; i <= 6; ++i) d = max(d, abs(dot(p, GDFVectors[i])));
return d - r;
}
float fTruncatedIcosahedron(vec3 p, float r) {
float d = 0.;
for (int i = 3; i <= 18; ++i) d = max(d, abs(dot(p, GDFVectors[i])));
return d - r;
}
////////////////////////////////////////////////////////////////
//
// DOMAIN MANIPULATION OPERATORS
//
////////////////////////////////////////////////////////////////
//
// Conventions:
//
// Everything that modifies the domain is named pSomething.
//
// Many operate only on a subset of the three dimensions. For those,
// you must choose the dimensions that you want manipulated
// by supplying e.g. <p.x> or <p.zx>
//
// <inout p> is always the first argument and modified in place.
//
// Many of the operators partition space into cells. An identifier
// or cell index is returned, if possible. This return value is
// intended to be optionally used e.g. as a random seed to change
// parameters of the distance functions inside the cells.
//
// Unless stated otherwise, for cell index 0, <p> is unchanged and cells
// are centered on the origin so objects don't have to be moved to fit.
//
//
////////////////////////////////////////////////////////////////
// Rotate around a coordinate axis (i.e. in a plane perpendicular to that axis) by angle <a>.
// Read like this: R(p.xz, a) rotates "x towards z".
// This is fast if <a> is a compile-time constant and slower (but still practical) if not.
void pR(inout vec2 p, float a) {
p = cos(a)*p + sin(a)*vec2(p.y, -p.x);
}
// Shortcut for 45-degrees rotation
void pR45(inout vec2 p) {
p = (p + vec2(p.y, -p.x))*sqrt(0.5);
}
// Repeat space along one axis. Use like this to repeat along the x axis:
// <float cell = pMod1(p.x,5);> - using the return value is optional.
float pMod1(inout float p, float size) {
float halfsize = size*0.5;
float c = floor((p + halfsize)/size);
p = mod(p + halfsize, size) - halfsize;
return c;
}
// Same, but mirror every second cell so they match at the boundaries
float pModMirror1(inout float p, float size) {
float halfsize = size*0.5;
float c = floor((p + halfsize)/size);
p = mod(p + halfsize,size) - halfsize;
p *= mod(c, 2.0)*2. - 1.;
return c;
}
// Repeat the domain only in positive direction. Everything in the negative half-space is unchanged.
float pModSingle1(inout float p, float size) {
float halfsize = size*0.5;
float c = floor((p + halfsize)/size);
if (p >= 0.)
p = mod(p + halfsize, size) - halfsize;
return c;
}
// Repeat only a few times: from indices <start> to <stop> (similar to above, but more flexible)
float pModInterval1(inout float p, float size, float start, float stop) {
float halfsize = size*0.5;
float c = floor((p + halfsize)/size);
p = mod(p+halfsize, size) - halfsize;
if (c > stop) { //yes, this might not be the best thing numerically.
p += size*(c - stop);
c = stop;
}
if (c <start) {
p += size*(c - start);
c = start;
}
return c;
}
// Repeat around the origin by a fixed angle.
// For easier use, num of repetitions is use to specify the angle.
float pModPolar(inout vec2 p, float repetitions) {
float angle = 2.*PI/repetitions;
float a = atan(p.y, p.x) + angle/2.;
float r = length(p);
float c = floor(a/angle);
a = mod(a,angle) - angle/2.;
p = vec2(cos(a), sin(a))*r;
// For an odd number of repetitions, fix cell index of the cell in -x direction
// (cell index would be e.g. -5 and 5 in the two halves of the cell):
if (abs(c) >= (repetitions/2.)) c = abs(c);
return c;
}
// Repeat in two dimensions
vec2 pMod2(inout vec2 p, vec2 size) {
vec2 c = floor((p + size*0.5)/size);
p = mod(p + size*0.5,size) - size*0.5;
return c;
}
// Same, but mirror every second cell so all boundaries match
vec2 pModMirror2(inout vec2 p, vec2 size) {
vec2 halfsize = size*0.5;
vec2 c = floor((p + halfsize)/size);
p = mod(p + halfsize, size) - halfsize;
p *= mod(c,vec2(2))*2. - vec2(1);
return c;
}
// Same, but mirror every second cell at the diagonal as well
vec2 pModGrid2(inout vec2 p, vec2 size) {
vec2 c = floor((p + size*0.5)/size);
p = mod(p + size*0.5, size) - size*0.5;
p *= mod(c,vec2(2))*2. - vec2(1);
p -= size/2.;
if (p.x > p.y) p.xy = p.yx;
return floor(c/2.);
}
// Repeat in three dimensions
vec3 pMod3(inout vec3 p, vec3 size) {
vec3 c = floor((p + size*0.5)/size);
p = mod(p + size*0.5, size) - size*0.5;
return c;
}
// Mirror at an axis-aligned plane which is at a specified distance <dist> from the origin.
float pMirror (inout float p, float dist) {
float s = sgn(p);
p = abs(p)-dist;
return s;
}
// Mirror in both dimensions and at the diagonal, yielding one eighth of the space.
// translate by dist before mirroring.
vec2 pMirrorOctant (inout vec2 p, vec2 dist) {
vec2 s = sgn(p);
pMirror(p.x, dist.x);
pMirror(p.y, dist.y);
if (p.y > p.x)
p.xy = p.yx;
return s;
}
// Reflect space at a plane
float pReflect(inout vec3 p, vec3 planeNormal, float offset) {
float t = dot(p, planeNormal)+offset;
if (t < 0.) {
p = p - (2.*t)*planeNormal;
}
return sgn(t);
}
////////////////////////////////////////////////////////////////
//
// OBJECT COMBINATION OPERATORS
//
////////////////////////////////////////////////////////////////
//
// We usually need the following boolean operators to combine two objects:
// Union: OR(a,b)
// Intersection: AND(a,b)
// Difference: AND(a,!b)
// (a and b being the distances to the objects).
//
// The trivial implementations are min(a,b) for union, max(a,b) for intersection
// and max(a,-b) for difference. To combine objects in more interesting ways to
// produce rounded edges, chamfers, stairs, etc. instead of plain sharp edges we
// can use combination operators. It is common to use some kind of "smooth minimum"
// instead of min(), but we don't like that because it does not preserve Lipschitz
// continuity in many cases.
//
// Naming convention: since they return a distance, they are called fOpSomething.
// The different flavours usually implement all the boolean operators above
// and are called fOpUnionRound, fOpIntersectionRound, etc.
//
// The basic idea: Assume the object surfaces intersect at a right angle. The two
// distances <a> and <b> constitute a new local two-dimensional coordinate system
// with the actual intersection as the origin. In this coordinate system, we can
// evaluate any 2D distance function we want in order to shape the edge.
//
// The operators below are just those that we found useful or interesting and should
// be seen as examples. There are infinitely more possible operators.
//
// They are designed to actually produce correct distances or distance bounds, unlike
// popular "smooth minimum" operators, on the condition that the gradients of the two
// SDFs are at right angles. When they are off by more than 30 degrees or so, the
// Lipschitz condition will no longer hold (i.e. you might get artifacts). The worst
// case is parallel surfaces that are close to each other.
//
// Most have a float argument <r> to specify the radius of the feature they represent.
// This should be much smaller than the object size.
//
// Some of them have checks like "if ((-a < r) && (-b < r))" that restrict
// their influence (and computation cost) to a certain area. You might
// want to lift that restriction or enforce it. We have left it as comments
// in some cases.
//
// usage example:
//
// float fTwoBoxes(vec3 p) {
// float box0 = fBox(p, vec3(1));
// float box1 = fBox(p-vec3(1), vec3(1));
// return fOpUnionChamfer(box0, box1, 0.2);
// }
//
////////////////////////////////////////////////////////////////
// The "Chamfer" flavour makes a 45-degree chamfered edge (the diagonal of a square of size <r>):
float fOpUnionChamfer(float a, float b, float r) {
return min(min(a, b), (a - r + b)*sqrt(0.5));
}
// Intersection has to deal with what is normally the inside of the resulting object
// when using union, which we normally don't care about too much. Thus, intersection
// implementations sometimes differ from union implementations.
float fOpIntersectionChamfer(float a, float b, float r) {
return max(max(a, b), (a + r + b)*sqrt(0.5));
}
// Difference can be built from Intersection or Union:
float fOpDifferenceChamfer (float a, float b, float r) {
return fOpIntersectionChamfer(a, -b, r);
}
// The "Round" variant uses a quarter-circle to join the two objects smoothly:
float fOpUnionRound(float a, float b, float r) {
vec2 u = max(vec2(r - a,r - b), vec2(0));
return max(r, min (a, b)) - length(u);
}
float fOpIntersectionRound(float a, float b, float r) {
vec2 u = max(vec2(r + a,r + b), vec2(0));
return min(-r, max (a, b)) + length(u);
}
float fOpDifferenceRound (float a, float b, float r) {
return fOpIntersectionRound(a, -b, r);
}
// The "Columns" flavour makes n-1 circular columns at a 45 degree angle:
float fOpUnionColumns(float a, float b, float r, float n) {
if ((a < r) && (b < r)) {
vec2 p = vec2(a, b);
float columnradius = r*sqrt(2.)/((n-1.)*2.+sqrt(2.));
pR45(p);
p.x -= sqrt(2.)/2.*r;
p.x += columnradius*sqrt(2.);
if (mod(n,2.) == 1.) {
p.y += columnradius;
}
// At this point, we have turned 45 degrees and moved at a point on the
// diagonal that we want to place the columns on.
// Now, repeat the domain along this direction and place a circle.
pMod1(p.y, columnradius*2.);
float result = length(p) - columnradius;
result = min(result, p.x);
result = min(result, a);
return min(result, b);
} else {
return min(a, b);
}
}
float fOpDifferenceColumns(float a, float b, float r, float n) {
a = -a;
float m = min(a, b);
//avoid the expensive computation where not needed (produces discontinuity though)
if ((a < r) && (b < r)) {
vec2 p = vec2(a, b);
float columnradius = r*sqrt(2.)/n/2.0;
columnradius = r*sqrt(2.)/((n-1.)*2.+sqrt(2.));
pR45(p);
p.y += columnradius;
p.x -= sqrt(2.)/2.*r;
p.x += -columnradius*sqrt(2.)/2.;
if (mod(n,2.) == 1.) {
p.y += columnradius;
}
pMod1(p.y,columnradius*2.);
float result = -length(p) + columnradius;
result = max(result, p.x);
result = min(result, a);
return -min(result, b);
} else {
return -m;
}
}
float fOpIntersectionColumns(float a, float b, float r, float n) {
return fOpDifferenceColumns(a,-b,r, n);
}
// The "Stairs" flavour produces n-1 steps of a staircase:
// much less stupid version by paniq
float fOpUnionStairs(float a, float b, float r, float n) {
float s = r/n;
float u = b-r;
return min(min(a,b), 0.5 * (u + a + abs ((mod (u - a + s, 2. * s)) - s)));
}
// We can just call Union since stairs are symmetric.
float fOpIntersectionStairs(float a, float b, float r, float n) {
return -fOpUnionStairs(-a, -b, r, n);
}
float fOpDifferenceStairs(float a, float b, float r, float n) {
return -fOpUnionStairs(-a, b, r, n);
}
// Similar to fOpUnionRound, but more lipschitz-y at acute angles
// (and less so at 90 degrees). Useful when fudging around too much
// by MediaMolecule, from Alex Evans' siggraph slides
float fOpUnionSoft(float a, float b, float r) {
float e = max(r - abs(a - b), 0.);
return min(a, b) - e*e*0.25/r;
}
// produces a cylindical pipe that runs along the intersection.
// No objects remain, only the pipe. This is not a boolean operator.
float fOpPipe(float a, float b, float r) {
return length(vec2(a, b)) - r;
}
// first object gets a v-shaped engraving where it intersect the second
float fOpEngrave(float a, float b, float r) {
return max(a, (a + r - abs(b))*sqrt(0.5));
}
// first object gets a capenter-style groove cut out
float fOpGroove(float a, float b, float ra, float rb) {
return max(a, min(a + ra, rb - abs(b)));
}
// first object gets a capenter-style tongue attached
float fOpTongue(float a, float b, float ra, float rb) {
return min(a, max(a - ra, abs(b) - rb));
}
`