Public
Edited
May 9, 2023
2 forks
Importers
31 stars
A Julia set on the Riemann sphereThe Z-CurveBarnsley's fernA stochastic digraph IFS algorithmSelf-affine tilesThe TwindragonThe Eisenstein fractionsA self-affine tile with holesSelf-affine tiles via polygon mergeGolden rectangle fractalsBifurcation diagram with critical curvesThe tame twindragonIllustrations for the proof of Green's theoremNon-orientability of a Mobius stripExamples of parametric surfacesPenrose tilingThe extended unit circlePenrose three coloringNewtons's method on the Riemann sphereConic sectionsDivisor graphsThe dance of Earth and VenusIterating multiples of the sine functionBorderline fractalsSelf-similar intersectionsBox-counting dimension examplesMandelbrot by dimensionInverse iteration for quadratic Julia setsInteger Apollonian PackingsIllustrations of two-dimensonal heat flowThe logistic bifurcation locusThe eleven unfoldings of the cubeA unimodal function with fractal level curvesGreen's theorem and polygonal areaThe geometry and numerics of first order ODEsThe xxx^xxx-spindleAnimated beatsRauzy FractalsHilbert's coordinate functionsPluckNot PiDrum strikeThe Koch snowflakeFractalized squareA Taylor series about π/4\pi/4π/4PlotX3D HyperboloidA PlotX3D animationModular arithmetic in 5th grade artSimple S-I-R ModelThe Poisson KernelPoly-gasketsClassification of 2D linear systems via trace and determinant
Julia sets and the Mandelbrot set
Water wavesFourier SeriesDisks for a solid of revolutionOrbit detection for the Mandelbrot setTracing a path on a spherePlot for mathematiciansFunctions of two variablesPartial derivativesDijkstra's algorithm on an RGGGradient ascentUnfolding polyhedraTangent plane to a level surfaceA strange discontinuityExamples of level surfacesMcMullen carpetsHills and valleysThe definition of ⇒Double and iterated integralsMST in an RGGTrees are bipartiteFractal typesettingd3.hierarchy and d3.treeK23 is PlanarPolar CoordinatesParametric region generatorParametric Plot 2DContour plotsGreedy graph coloringGraph6A few hundred interesting graphsThe Kings ProblemFirst order, autonomous systems of ODEsRunge-Kutta for systems of ODEs
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
function put_it_all_together() {
let container = d3
.create('div')
.style('width', width + 'px')
.style('height', 0.54 * width + 'px');
container.append(() => mandel_canvas.node()).style('float', 'left');
container.append(() => julia_svg);
container.append(() => c.node());
return container.node();
}
Insert cell
Insert cell
// A canvas to draw the Mandelbrot set
mandel_canvas = {
let xmin = -2;
let xmax = 0.6;
let ymin = -1.3;
let ymax = 1.3;
let w = 0.5 * width;
let canvas = d3
.create('canvas')
.attr('width', w)
.attr('height', w);
draw_mandelbrot_set(canvas.node(), xmin, xmax, ymin, ymax);
let context = canvas.node().getContext("2d");
context.fillStyle = "#f30";
let ij = xy_to_ij([-1, 0], xmin, xmax, ymin, ymax, w);
context.fillRect(ij[0] + 1, ij[1] - 1, 3, 3);
const render = function(ij) {
let xy = ij_to_xy(ij, xmin, xmax, ymin, ymax, w);
// The lazy programmer's way to cover up the previous clicked point
draw_mandelbrot_set(canvas.node(), xmin, xmax, ymin, ymax);
context.fillRect(ij[0] + 1, ij[1] - 1, 3, 3);

d3.select(julia_svg)
.attr('c', ij_to_xy(ij, xmin, xmax, ymin, ymax, w))
.select('image')
.attr('xlink:href', generate_julia_im_url({ re: xy[0], im: xy[1] }));
c.html(`c = ${d3.format('.2f')(xy[0])} + ${d3.format('.2f')(xy[1])} i`);
};
let clicked = false;
canvas.on('mousedown', function() {
clicked = true;
render(d3.mouse(this));
});
canvas.on('mousemove', function() {
if (clicked) render(d3.mouse(this));
});
canvas.on('mouseup', function() {
clicked = false;
});

return canvas;
}
Insert cell
// A function to draw the mandelbrot set
function draw_mandelbrot_set(canvas, xmin, xmax, ymin, ymax) {
let bail = 100;
let w = width / 2;
let mandel_context = canvas.getContext("2d");
let canvasData = mandel_context.createImageData(canvas.width, canvas.height);
for (let i = 0; i < canvas.width; i++) {
for (let j = 0; j < canvas.height; j++) {
var c = ij_to_xy([i, j], xmin, xmax, ymin, ymax, w);
var it_cnt = mandelbrot_iteration_count(c[0], c[1], bail);
var scaled_it_cnt = 255 - (255 * it_cnt) / (bail + 1);
var idx = (i + j * canvas.width) * 4;
canvasData.data[idx + 0] = scaled_it_cnt;
canvasData.data[idx + 1] = scaled_it_cnt;
canvasData.data[idx + 2] = scaled_it_cnt;
canvasData.data[idx + 3] = 255;
}
}
mandel_context.putImageData(canvasData, 0, 0);
}
Insert cell
// Compute the iteration count from z=0 for a given z^2+c
function mandelbrot_iteration_count(cre, cim, bail = 200) {
let x = cre;
let y = cim;
let xtemp;
let ytemp;
let cnt = 0;
while (x * x + y * y <= 4 && ++cnt < bail) {
xtemp = x;
ytemp = y;
x = xtemp * xtemp - ytemp * ytemp + cre;
y = 2 * xtemp * ytemp + cim;
}
return cnt;
}
Insert cell
Insert cell
// A place to draw the Julia set
// The picture of the Julia set is drawn to a canvas which becomes the background of an SVG.
// The orbit is drawn as a path in the SVG on hover.
julia_svg = {
let w = width / 2;

const xScale = d3
.scaleLinear()
.domain([-2, 2])
.range([0, w]);
const yScale = d3
.scaleLinear()
.domain([-2, 2])
.range([w, 0]);
const rScale = d3
.scaleLinear()
.domain([0, 4])
.range([0, w]);
const pts_to_path = d3
.line()
.x(function(d) {
return xScale(d[0]);
})
.y(function(d) {
return yScale(d[1]);
});

let svg = d3
.create("svg")
.attr('width', w)
.attr('height', w);
if (!svg.attr('c')) {
svg.attr('c', '-1,0');
}

// Set up the SVG background
const mapbg = DOM.uid('mapbg');

svg
.append("defs")
.append('pattern')
.attr('id', mapbg.id)
.attr('patternUnits', 'userSpaceOnUse')
.attr('width', w)
.attr('height', w)
.append("image")
.attr("xlink:href", generate_julia_im_url({ re: -1, im: 0 }))
.attr('width', w)
.attr('height', w);

svg
.append("rect")
.attr("x", 0)
.attr("y", 0)
.attr("width", w)
.attr("height", w)
.attr("fill", mapbg);

svg
.on('mousemove', function() {
svg.selectAll('.orbit').remove();
let c = svg
.attr('c')
.split(',')
.map(parseFloat);
let xy = ij_to_xy(d3.mouse(this), -2, 2, -2, 2, w);
let orbit = compute_orbit(c, xy);
for (let i = 0; i < orbit.length; i++) {
svg
.append("path")
.attr('class', 'orbit')
.attr("d", pts_to_path(orbit.slice(i, i + 2)))
.attr("stroke", "#8888FF")
.attr("stroke-width", 2)
.attr("fill", "none")
.style('opacity', 0.5);
svg
.append("circle")
.attr("class", 'orbit')
.attr("cx", xScale(orbit[i][0]))
.attr("cy", yScale(orbit[i][1]))
.attr("r", 4)
.attr("fill", "red")
.attr("stroke", "none")
.attr('fill-opacity', 0.03);
}
svg
.append("circle")
.attr("class", 'orbit')
.attr("cx", xScale(orbit[0][0]))
.attr("cy", yScale(orbit[0][1]))
.attr("r", 4)
.attr("fill", "green")
.attr("stroke", "black")
.attr("stroke-width", 1);
})
.on('mouseleave', function() {
svg.selectAll('.orbit').remove();
});

return svg.node();
}
Insert cell
// Generate the dataURL that holds an image of the Julia set.
function generate_julia_im_url(c, bail = 200) {
let w = Math.floor(width / 2);
let context = DOM.context2d(w, w);
context.canvas.width = w;
context.canvas.height = w;
let xmin = -2;
let xmax = 2;
let ymin = -2;
let ymax = 2;
let canvasData = context.createImageData(w, w);

for (let i = 0; i < w; i = i + 1) {
for (let j = 0; j < w; j = j + 1) {
let xy = ij_to_xy([i, j], xmin, xmax, ymin, ymax, w);
let it_cnt = julia_iteration_count(c.re, c.im, xy[0], xy[1], bail);
let color = 255 - (255 * it_cnt) / (bail + 1);
let idx = (i + j * w) * 4;
canvasData.data[idx + 0] = color;
canvasData.data[idx + 1] = color;
canvasData.data[idx + 2] = color;
canvasData.data[idx + 3] = 255;
}
}
context.putImageData(canvasData, 0, 0);
return context.canvas.toDataURL();
}
Insert cell
// Compute the iteration count for a given z^2+c and given z0
function julia_iteration_count(cre, cim, x0, y0, bail) {
let x = x0;
let y = y0;
let xtemp;
let ytemp;
let cnt = 0;
while (x * x + y * y <= 4 && ++cnt < bail) {
xtemp = x;
ytemp = y;
x = xtemp * xtemp - ytemp * ytemp + cre;
y = 2 * xtemp * ytemp + cim;
}
return cnt;
}
Insert cell
Insert cell
function f(c, z) {
let cx = c[0];
let cy = c[1];
let x = z[0];
let y = z[1];
return [x * x - y * y + cx, 2 * x * y + cy];
}
Insert cell
function compute_orbit(c, z0) {
let z = z0;
let orbit = [z0];
let cnt = 0;
while (z[0] * z[0] + z[1] * z[1] < 20 && cnt < 500) {
z = f(c, z);
orbit.push(z);
cnt = cnt + 1;
}
return orbit;
}
Insert cell
Insert cell
// A place to display c
c = d3
.create('div')
.style('width', width + 'px')
.style('height', 0.033 * width + 'px')
.style('text-align', 'center')
.text('c = -1')
Insert cell
Insert cell
function ij_to_xy(ij, xmin, xmax, ymin, ymax, w) {
return [
((xmax - xmin) / (w - 1)) * ij[0] + xmin,
((ymin - ymax) / (w - 1)) * ij[1] + ymax
];
}
Insert cell
function xy_to_ij(xy, xmin, xmax, ymin, ymax, w) {
return [
((w - 1) * (xy[0] - xmin)) / (xmax - xmin),
((1 - w) * (xy[1] - ymax)) / (ymax - ymin)
];
}
Insert cell
d3 = require('d3@5')
Insert cell

Purpose-built for displays of data

Observable is your go-to platform for exploring data and creating expressive data visualizations. Use reactive JavaScript notebooks for prototyping and a collaborative canvas for visual data exploration and dashboard creation.
Learn more