Public
Edited
Apr 23, 2024
2 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
simple_solution = {
// Step size h defined in terms of parition size n
// n is defined by a slider below.
let h = 1 / n;

// Initialize a matrix of zeros
let L = mlm.Matrix.zeros(n - 1, n - 1);

// Reset values on the diagonal and near diagonals
for (let i = 0; i < n - 1; i++) {
L.set(i, i, -2);
if (i < n - 2) {
L.set(i + 1, i, 1);
L.set(i, i + 1, 1);
}
}
// Multiply by 100
L = L.mul((1 / h) ** 2);

// Set up a the right hand side, a vector with value 2 in each entry.
let B = mlm.Matrix.columnVector(d3.range(n - 1).map(() => 2));

// Solve the system
let solution = mlm.solve(L, B).getColumn(0);
solution = [0].concat(solution.concat([0]));
return solution;
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
plot(
solveBVP(
-1,
2,
1,
4,
(x) => -x,
(x) => x ** 2,
(x) => -2 + 16 * x + 2 * x ** 2 - 10 * x ** 3 - x ** 4 + 2 * x ** 5,
15
),
{
actual: "2*x^3-x^2-4*x"
}
)
Insert cell
//Signature:
// solveBVP(a, b, ua, ub, p, q, f, n)
// where we're trying to solve
// u'' + p*u' + q*u = f(x)
// with u(a) = u_a and u(b) = u_b

sample = plot(
solveBVP(
0,
13,
1,
0,
(x) => 0,
(x) => x,
(x) => x,
400
)
)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
ed.realEigenvalues.slice(-5)
Insert cell
Insert cell
d3
.range(1, 6)
.map(n => -1 * (n * Math.PI) ** 2)
.reverse()
Insert cell
ed = new mlm.EigenvalueDecomposition(L)
Insert cell
L = term2(0, 1, N)
Insert cell
pts = [0]
.concat(ed.eigenvectorMatrix.getColumn(N - (m + 1)))
.concat([0])
.map((y, i) => [(i + 1) / N, y])
Insert cell
Insert cell
Insert cell
// The main function
function solveBVP(a, b, ua, ub, p, q, f, n) {
let h = (b - a) / n;

let L = term2(a, b, n);
let D = term1(a, b, n, p);
let C = term0(a, b, n, q);
let M = L.addM(D).addM(C);

let A = (ub - ua) / (b - a);
let B = (b * ua - a * ub) / (b - a);

let F;
if (typeof f == 'number') {
F = x => f + (A * x + B);
} else if (typeof f == 'function') {
F = x => f(x) - q(x) * (A * x + B) - p(x) * A;
}

let RHS = mlm.Matrix.columnVector(d3.range(a + h, b - h / 2, h).map(F));
let solution = mlm.solve(M, RHS).getColumn(0);
solution = [0].concat(solution.concat([0]));
solution = solution.map((u, i) => u + (A * (a + i * h) + B));
solution = d3.zip(d3.range(a, b + h / 2, h), solution);
return solution;
}
Insert cell
// The second order term, u''
function term2(a, b, n) {
let h = (b - a) / n;
let L = mlm.Matrix.zeros(n - 1, n - 1);
for (let i = 0; i < n - 1; i++) {
L.set(i, i, -2);
if (i < n - 2) {
L.set(i + 1, i, 1);
L.set(i, i + 1, 1);
}
}
L = L.mul((1 / h) ** 2);
return L;
}
Insert cell
// The first order term, p(x)*u'
function term1(a, b, n, p) {
let h = (b - a) / n;
let n_over_2h = n / (2 * (b - a));
let M = mlm.Matrix.zeros(n - 1, n - 1);
if (typeof p == 'number') {
for (let i = 0; i < n - 2; i++) {
M.set(i + 1, i, -n_over_2h * p);
M.set(i, i + 1, n_over_2h * p);
}
} else if (typeof p == 'function') {
for (let i = 0; i < n - 2; i++) {
M.set(i + 1, i, -n_over_2h * p(a + (i + 2) * h));
M.set(i, i + 1, n_over_2h * p(a + (i + 1) * h));
}
}
return M;
}
Insert cell
// The zeroth order term, q(x)*u
function term0(a, b, n, q) {
let h = (b - a) / n;
let M = mlm.Matrix.zeros(n - 1, n - 1);
if (typeof q == 'number') {
for (let i = 0; i < n - 1; i++) {
M.set(i, i, q);
}
} else if (typeof q == 'function') {
for (let i = 0; i < n - 1; i++) {
M.set(i, i, q(a + (i + 1) * h));
}
}
return M;
}
Insert cell
Insert cell
// A function to plot the solutions that arise from this technique
function plot(solution, opts = {}) {
let { actual = false } = opts;
let height = 0.6 * width;
let container = d3
.create('div')
.style('position', 'relative')
.style('width', `${width}px`)
.style('height', `${height}px`);
let graph = container
.append('div')
.style('position', 'absolute')
.style('width', `${width}px`)
.style('height', `${height}px`)
.style('background-color', 'white');
let target = graph.node();

let functionPlotData = [
{
points: solution,
fnType: 'points',
graphType: 'polyline'
},
{
points: solution,
fnType: 'points',
graphType: 'scatter'
}
];
if (actual) {
functionPlotData.unshift({ fn: actual });
}

console.log(functionPlotData);
let ymin = d3.min(solution.map(pt => pt[1]));
let ymax = d3.max(solution.map(pt => pt[1]));
functionPlot({
target: target,
width: width,
height: height,
xAxis: { domain: [solution[0][0], solution[solution.length - 1][0]] },
yAxis: { domain: [ymin, ymax] },
disableZoom: true,
data: functionPlotData
});

graph.selectAll('.origin').style('opacity', 0);
graph
.selectAll('circle')
.attr('r', 4)
.style('fill', 'black')
.style('stroke', 'black');
graph
.selectAll('.line-0')
.attr('stroke-width', 4)
.attr('stroke', 'red');
graph
.selectAll('.line-1')
.attr('stroke-width', 2)
.attr('stroke', 'green');

container
.append('div')
.style('position', 'absolute')
.style('width', `${width}px`)
.style('height', `${height}px`)
.style('top', '0px')
.style('left', '0px');

return container.node();
}
Insert cell
function matrix_to_TeX(M) {
let ff = d3.format("0.2~f");
function format(x) {
let formatted = ff(x);
if (formatted == "NaN") {
return '\\vdots';
} else {
return formatted;
}
}
function makeRow(R) {
let result = '';
let cut;
if (M.columns < 10) {
cut = -1;
} else {
cut = 9;
}
R.slice(0, cut).forEach(function(x) {
result = result + format(x) + ' & ';
});
if (cut == 9) {
result = result + '\\cdots &';
}
result = result + format(R.slice(-1)[0]) + '\\\\';
return result;
}
let MJSON = M.toJSON();
let tex_string = '\\begin{pmatrix}';
MJSON.slice(0, 9).forEach(function(r) {
tex_string = tex_string + makeRow(r);
});
if (M.columns > 10) {
tex_string = tex_string + makeRow(d3.range(M.columns).map(x => '.'));
}
if (M.columns >= 10) {
tex_string = tex_string + makeRow(MJSON.slice(-1)[0]);
}
tex_string = tex_string + ' \\end{pmatrix}';
return tex_string;
}
Insert cell
Insert cell
sin = Math.sin
Insert cell
cos = Math.cos
Insert cell
exp = Math.exp
Insert cell
pi = Math.PI
Insert cell
e = Math.E
Insert cell
import { Range } from "@observablehq/inputs"
Insert cell
MathJax = require('https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js').catch(
() => window['MathJax']
)
Insert cell
functionPlot = require("function-plot@1/dist/function-plot")
Insert cell
mlm = require('ml-matrix')
Insert cell
d3 = require('d3@6')
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more