Public
Edited
Jan 23, 2023
28 forks
Importers
76 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Plot.plot({
projection: "albers-usa",
width: exampleWidth,
height: exampleHeight,
marks: [
Plot.frame({stroke: "white", fill: "#111"}),
Plot.geo(nation, {stroke: "#fff", strokeWidth: 0.35})
]
})
Insert cell
us = d3.json("https://unpkg.com/us-atlas@3/counties-10m.json")
Insert cell
nation = topojson.feature(us, us.objects.nation)
Insert cell
Insert cell
Plot.plot({
projection: "albers-usa",
width: exampleWidth,
height: exampleHeight,
marks: [
Plot.frame({ stroke: "white", fill: "#111" }),
Plot.geo(countyShapes, { stroke: "#fff", strokeWidth: 0.35 })
]
})
Insert cell
countyShapes = topojson.feature(us, us.objects.counties)
Insert cell
Insert cell
fipsByName = new Map(
countyShapes.features.map((d) => {
const state = statesByFips.get(d.id.slice(0, 2)).name;
const county = d.properties.name;
const name = county + ", " + usStateCodes.getStateCodeByStateName(state);
return [name, d.id];
})
)
Insert cell
nameByFips = new Map(Array.from(fipsByName, ([name, fips]) => [fips, name]))
Insert cell
Insert cell
countyStates = countyShapes.features.map((d) => {
const state = statesByFips.get(d.id.slice(0, 2)).name;
const stateCode = usStateCodes.getStateCodeByStateName(state);
const county = d.properties.name;
const name = `${county}, ${stateCode}`;
return {fips: d.id, state, stateCode, county, name};
})
Insert cell
countyStates.filter(d => d.stateCode === "MD").sort((a, b) => a.county.localeCompare(b.county))
Insert cell
Insert cell
Plot.plot({
projection: "albers-usa",
width: exampleWidth,
height: exampleHeight,
marks: [
Plot.frame({stroke: "white", fill: "#111"}),
Plot.geo(stateShapes, {stroke: "#fff", strokeWidth: 0.35})
]
})
Insert cell
usStateCodes = import('https://cdn.skypack.dev/us-state-codes@1.1.2?min').then(d => d.default)
Insert cell
stateShapes = topojson.feature(us, us.objects.states)
Insert cell
statesByFips = new Map(Array.from(us.objects.states.geometries, d => [d.id, d.properties]))
Insert cell
// The borders of the states are merged so we can render a single line where they would otherwise overlap
statesMesh = topojson.mesh(us, us.objects.states, (a, b) => a !== b)
Insert cell
Insert cell
Plot.plot({
projection: "albers-usa",
width: exampleWidth,
height: exampleHeight,
marks: [
Plot.frame({stroke: "white", fill: "#111"}),
Plot.dot(usCities, {x: "longitude", y: "latitude", fill: "#fff", r: 1})
]
})
Insert cell
usCities = (await FileAttachment("ne_10m_populated_places.csv").csv())
.filter((d) => d["ADM0NAME"] === "United States of America")
.map((d) => ({
name: d.NAME,
state: d.ADM1NAME,
population: +d.POP_MAX,
latitude: +d.LATITUDE,
longitude: +d.LONGITUDE
}))
Insert cell
Insert cell
usCitiesGeo = ({
type: "FeatureCollection",
features: usCities.map(
({ longitude, latitude, ...properties }) => ({
type: "Feature",
id: properties.name,
properties,
geometry: { type: "Point", coordinates: [longitude, latitude] }
})
)
})
Insert cell
Insert cell
Insert cell
{
const f3 = d3.format(",.3r");
const f1 = d3.format(".1s");
return Plot.plot({
projection: "albers-usa",
width: exampleWidth,
height: exampleHeight,
marks: [
Plot.frame({ fill: "#111" }),
Plot.geo(countyShapes, {
stroke: "none",
strokeWidth: 0.35,
fill: (d) => density(d),
title: (d) => `${d.id}: ${f3(density(d))} hab/km²`
})
],
color: {
scheme: "ylgnbu",
domain: [0.2, 20000],
type: "log",
legend: true,
label: "population density (hab/km²)",
ticks: 4,
tickFormat: (d) => (d < 1 ? "≤1" : f1(d))
}
});
}
Insert cell
populationByCounty = new Map(Array.from(populationData, ({ POP, state, county }) => [`${state}${county}`, +POP]))
Insert cell
Insert cell
function density(d) {
const population = populationByCounty.get(d.id);
const area = d3.geoArea(d) * (510e6 / (4 * Math.PI)); // km²
return population / area;
}
Insert cell
Insert cell
populationData = useCache
? FileAttachment("populationData.csv").csv() // cache of the API call from October 2020

// or load the data from the census API, and tweak its format
: d3.json("https://api.census.gov/data/2018/pep/population?get=POP&for=county:*").then(rows => {
const keys = rows.shift();
return Array.from(rows, row => Object.fromEntries(keys.map((key, i) => [key, row[i]])));
})
Insert cell
Insert cell
Insert cell
Insert cell
demographicsData = ({
2018: new Map(demographicsData2018.map(processDemographics).map(d => [`${d.state}${d.county}`, d])),
2016: new Map(demographicsData2016.map(processDemographics).map(d => [`${d.state}${d.county}`, d])),
2014: new Map(demographicsData2014.map(processDemographics).map(d => [`${d.state}${d.county}`, d])),
})
Insert cell
Insert cell
selectedFields = [
"B01003_001E", // estimated total population
// Sex demographics
// https://api.census.gov/data/2018/acs/acs5/groups/B01001.html
"B01001_002E", // Total Male
// TODO: age breakdowns for male
"B01001_026E", // Total Female
// TODO: age breakdowns for female
// Racial demographics
// https://api.census.gov/data/2018/acs/acs5/groups/B02001.html
"B02001_002E", // White (includes Hispanic or Latino?)
"B02001_003E", // Black or African American
"B02001_004E", // American Indian or Alaskan Native
"B02001_005E", // Asian
"B02001_006E", // Native Hawaiian or Pacific Islander
"B02001_007E", // Some other race
"B02001_008E", // Two or more races
"B02001_009E", // Two or more races (one is some other)
"B02001_010E", // Three or more races
// Hispanic or Latino Origin
// https://api.census.gov/data/2018/acs/acs5/groups/B03003.html
// "B03003_001E", // Total
"B03003_002E", // not Hispanic or Latino
"B03003_003E", // Hispanic or Latino
// GINI index of inequality
// https://api.census.gov/data/2018/acs/acs5/groups/B19083.html
"B19083_001E", // gini index
// Per-capita income in last 12 months (inflation adjusted for that year)
"B19301_001E", // All races
"B19301A_001E", // White
"B19301H_001E", // White (not hispanic)
"B19301I_001E", // Hispanic or Latino
"B19301B_001E", // Black or African American
"B19301C_001E", // American Indian or Alaskan Native
"B19301D_001E", // Asian
"B19301E_001E", // Native Hawaiian or Pacific Islander
"B19301F_001E", // Some other race
"B19301G_001E", // Two or more races
]
Insert cell
niceKeys = selectedFields.map(niceLabel)
Insert cell
Insert cell
// Uncomment this cell if you want to query the Census API
// demographicsDataApi = d3.json(`https://api.census.gov/data/2018/acs/acs5?get=NAME,${selectedFields.join(",")}&for=county`)
Insert cell
demographicsData2018 = FileAttachment("demographicsData2018.csv").csv({typed: true})
Insert cell
demographicsData2016 = FileAttachment("demographicsDataApi2016.csv").csv({typed: true})
Insert cell
demographicsData2014 = FileAttachment("demographicsDataApi2014.csv").csv({typed: true})
Insert cell
// Uncomment this cell if you want to query the Census API
// demographicsKeys = d3.json("https://api.census.gov/data/2018/acs/acs5/variables.json")
Insert cell
demographicsKeysFile = FileAttachment("demographicsKeys.json").json()
Insert cell
Insert cell
processDemographics = ({ ...d }) => {
d.state = String(d.state).padStart(2, "0");
d.county = String(d.county).padStart(3, "0");
for (const key of selectedFields) if (!d[key] || d[key] < 0) d[key] = -1;
return d;
}
Insert cell
Insert cell
niceLabel = (key) => {
const moe = key.slice(key.length - 1) == "M";
// if its a margin of error field, we don't have it in the lookup so we us the E(stimate) field instead
const d = demographicsKeysFile.variables[moe ? key.replace(/M$/, "E") : key];
const niceLabel = d.label
.split("!!")
.filter((d) => d !== "Estimate" && d !== "Total" && d.indexOf("Per capita") !== 0)
.join(" ");
const niceConcept = `${moe ? "Margin of error: " : ""}${d.concept.toLowerCase()}`;
return niceLabel ? `${niceConcept}: ${niceLabel.toLowerCase()}` : niceConcept;
}
Insert cell
Insert cell
Insert cell
Insert cell
nytDate = "2021-12-31"
Insert cell
nytOnDateByCounty = new Map(Array.from(nytOnDate, d => [d.fips, d]))
Insert cell
import { rawData as nytData } with { nytStartDate as startDate } from "@jashkenas/united-states-coronavirus-daily-cases-map-covid-19"
Insert cell
nytByDay = d3.group(nytData, d => d.date)
Insert cell
nytOnDate = nytByDay.get(nytDate)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more