Public
Edited
Jul 22, 2024
11 forks
23 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
group = bins
.map((d) => {
return [d.x0, d3.sum(d, (d) => d.difference)];
})
.filter((d) => d[1])
Insert cell
dailyGroup = dailyBins
.map((d) => {
return [d.x0, d3.sum(d, (d) => d.difference)];
})
.filter((d) => d[1])
Insert cell
bins = d3
.bin()
.value((d) => d.timestamp)
.thresholds(
thresholdTime(
timeFrame === "Weekly" ? d3.timeWeek.every(1) : d3.timeDay.every(1)
)
)(orderedData)
.filter((d) => d[1])
Insert cell
dailyBins = d3
.bin()
.value((d) => d.timestamp)
.thresholds(thresholdTime(d3.timeDay.every(1)))(orderedData)
.filter((d) => d[1])
Insert cell
hourlyGroup = hourlyBins
.map((d) => [d.x0, d3.sum(d, (d) => d.difference)])
.slice(-24)
.map(([hour, amount]) => {
return {
hour,
amount
};
})
Insert cell
hourlyBins = d3
.bin()
.value((d) => d.timestamp)
.thresholds(thresholdTime(d3.timeHour.every(1)))(orderedData)
Insert cell
orderedData = data.slice().reverse()
Insert cell
data = {
const input = await d3.csv(url, ({ amount, timestamp }) => {
return {
amount: Number.parseInt(amount, 10),
timestamp: new Date(timestamp * 1000)
};
});

const data = input.map(({ amount, timestamp }, idx, arr) => {
let difference = null;

// this looks weird, but it's because they come in reverse-chron
if (idx + 1 !== arr.length) {
const prev = arr[idx + 1].amount;
difference = amount - prev;
}

return { difference, timestamp };
});

return data;
}
Insert cell
last24HoursData = {
// Get the current date and time
const now = new Date();

// Round down to the nearest hour
const roundedNow = new Date(now);
roundedNow.setMinutes(0, 0, 0);

// Calculate the threshold for the last 24 hours from the rounded time
const threshold = new Date(roundedNow.getTime() - 24 * 60 * 60 * 1000);

// Filter the array to include only dates within the last 24 hours
const filteredData = data
.filter(({ timestamp }) => timestamp >= threshold)
.map((d) => {
d.timestamp = dateFns.toZonedTime(d.timestamp, "America/New_York");

return d;
});

return filteredData;
}
Insert cell
Insert cell
height = width < 576 ? 300 : 500
Insert cell
function thresholdTime(n) {
return (data, min, max) => {
return d3
.scaleTime()
.domain([min, max])
.ticks(n);
};
}
Insert cell
hourFormat = d3.timeFormat("%-I %p")
Insert cell
dayFormat = d3.timeFormat("%b %-d")
Insert cell
url = 'https://raw.githubusercontent.com/rdmurphy/actblue-ticker-tracker/main/amounts.csv'
Insert cell
journalize = require("journalize@2")
Insert cell
dateFns = import("https://esm.sh/date-fns-tz@3.1.3")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more