Public
Edited
Feb 28, 2023
Insert cell
Insert cell
Insert cell
Plot.plot({
color: {
legend: true
},
marks: [
Plot.dot(athletes, {x: "weight", y: "height", stroke: "sex"})
]
})
Insert cell
athletes = (await FileAttachment("athletes.csv").csv({typed: true}))
.filter(d => ["aquatics", "volleyball", "football", "rowing"].includes(d.sport))
Insert cell
Insert cell
Plot.plot({
grid: true,
height: 320,
color: {
type: "ordinal",
scheme: "category10",
legend: true
},
facet: {
data: athletes,
x: "sex"
},
marks: [
Plot.frame(),
Plot.dot(athletes, {x: "weight", y: "height", fill: "sport", r: 1.5})
]
})
Insert cell
Insert cell
faceted = Plot.plot({
grid: true,
height: 320,
x: {
nice: true
},
color: {
scheme: "warm",
nice: true,
legend: true
},
facet: {
data: athletes,
x: "sport",
y: "sex"
},
marks: [
Plot.frame(),
Plot.dot(athletes, {x: "date_of_birth", y: "height", fill: "weight", r: 1.5})
]
})
Insert cell
Insert cell
sportsPlot = Plot.plot({
color: {
type: "ordinal",
scheme: "category10",
legend: "ramp"
},
marks: [
Plot.dot(athletes, {x: "weight", y: "height", fill: "sport", stroke: "white"})
]
})
Insert cell
Insert cell
sportsPlot.legend("color")
Insert cell
Insert cell
faceted.legend("color", {label: "Weight (kg) →", ticks: 10, width: 350})
Insert cell
Insert cell
Plot.legend({
color: {
interpolate: (t) => wavelengthToColor(400 + t * 350),
domain: [400, 750]
},
width: 350,
ticks: 10,
label: "Wavelength (nm) →"
})
Insert cell
Insert cell
Plot.legend({color: sportsPlot.scale("color")})
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
alpha = Plot.legend({
color: {
domain: "ABCD"
},
legend: "swatches",
className: "alphabet",
swatchSize: 20,
style: {
fontFamily: "Comic Sans MS",
fontSize: "20px"
}
})
Insert cell
Insert cell
Insert cell
seattle = FileAttachment("seattle-weather.csv").csv({typed: true})
Insert cell
tempChart = Plot.plot({
height: 300,
padding: 0,
y: {
tickFormat: Plot.formatMonth("en", "short")
},
color: {
type: "diverging",
pivot: d3.mean(seattle, d => d.temp_max),
reverse: true,
legend: true
},
marks: [
Plot.cell(seattle, Plot.group({fill: "max"}, {
x: d => d.date.getUTCDate(),
y: d => d.date.getUTCMonth(),
fill: "temp_max",
inset: 0.5
}))
]
})
Insert cell
Insert cell
tempChart.legend("color")
Insert cell
tempChart.legend("color", {label: "temperature (°C) →"})
Insert cell
Insert cell
Insert cell
tempChart.legend("color", {
label: "temperature (°C) →",
tickSize: r.tickSize,
ticks: r.ticks,
tickFormat: r.tickFormat,
round: r.round,
width: r.width,
height: r.height + r.tickSize
})
Insert cell
Insert cell
Insert cell
Plot.legend({opacity: {domain: [0, 10]}})
Insert cell
Plot.legend({opacity: {type: "linear"}, color: "orange"})
Insert cell
Insert cell
Insert cell
sportsScale = sportsPlot.scale("color")
Insert cell
Insert cell
<div>${sportsScale.domain.map((sport) => htl.html`<div style="
background: ${sportsScale.apply(sport)};
color: white;
display: inline-block;
padding: 0 6px 0 6px;
margin-right: 0.5em;
font-family: sans-serif;
font-size: 12px;
font-weight: bold;
">${sport.toUpperCase()}</div>`)}</div>
Insert cell
Insert cell
function wavelengthToColor(wl) {
let R, G, B, alpha;

if (wl >= 380 && wl < 440) {
R = (-1 * (wl - 440)) / (440 - 380);
G = 0;
B = 1;
} else if (wl >= 440 && wl < 490) {
R = 0;
G = (wl - 440) / (490 - 440);
B = 1;
} else if (wl >= 490 && wl < 510) {
R = 0;
G = 1;
B = (-1 * (wl - 510)) / (510 - 490);
} else if (wl >= 510 && wl < 580) {
R = (wl - 510) / (580 - 510);
G = 1;
B = 0;
} else if (wl >= 580 && wl < 645) {
R = 1;
G = (-1 * (wl - 645)) / (645 - 580);
B = 0.0;
} else if (wl >= 645 && wl <= 780) {
R = 1;
G = 0;
B = 0;
} else {
R = 0;
G = 0;
B = 0;
}

// intensity is lower at the edges of the visible spectrum.
if (wl > 780 || wl < 380) {
alpha = 0;
} else if (wl > 700) {
alpha = (780 - wl) / (780 - 700);
} else if (wl < 420) {
alpha = (wl - 380) / (420 - 380);
} else {
alpha = 1;
}

return `rgb(${R * alpha * 100}%,${G * alpha * 100}%,${B * alpha * 100}%)`;
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more