Public
Edited
Jul 19, 2023
Insert cell
Insert cell
Array.isArray({})
Insert cell
Insert cell
g
Insert cell
speciesBySite
Insert cell
contour_data = {
const outData = [];
speciesBySite.map((s) => {
let subset = g !== "All" ? s[1].filter((d) => d[0] === g) : s[1];
console.log(s[0]);
let speciesCount = d3.sum(subset, (d) => d[1]);
let loc = [
bcSiteLocs.find((d) => d.site === s[0]).long,
bcSiteLocs.find((d) => d.site === s[0]).lat
];
let array = new Array(speciesCount).fill(projection(loc));
outData.push([...array]);
});
return outData.flat();
}
Insert cell
g
Insert cell
projection = d3
.geoAlbers()
.rotate([126, 0])
.center([0, 50.3])
.parallels([50, 58.5])
.scale(8000)
.translate([960 / 2.1, 600 / 2])
// projection = d3
// .geoAlbers()
// .rotate([126, 0])
// .center([0, 50.3])
// .parallels([50, 58.5])
// .scale(3000)
// .translate([width - 160, height - 200])
Insert cell
dataset = "CTD"
Insert cell
bcSiteLocs
Insert cell
bc = topojson.feature(BC_Midres, BC_Midres.objects.BC_Midres_latlng)
Insert cell
BC_Midres
Insert cell
clip = false
Insert cell
color = d3.scaleSequentialQuantile([...contours.map(d => d.value)], t =>
d3.interpolateRdYlGn(1 - Math.pow(0.01 + t, 1 / curve))
)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
contour = d3
.contourDensity()
.x(d => d[0])
.y(d => d[1])
.size([width, height])
.bandwidth(bandwith)
.thresholds(thresholds)
.cellSize(cellsize)
Insert cell
contours = contour(contour_data)
Insert cell
path = d3.geoPath(projection)
Insert cell
sphere = ({ type: "Sphere" })
Insert cell
height = 600
Insert cell
speciesBySite = groupNumBySite
Insert cell
import {
bcSiteLocs,
groupNumBySite,
uniqGroups
} from "@mbrownshoes/integrated-coastal-observatory-ico-visualizations"
Insert cell
import { BC_Midres, states } from "73c68590a6b8ba4c"
Insert cell
import { legend } from "@d3/color-legend"
Insert cell
topojson = require("topojson-client@3")
Insert cell
d3 = require("d3@6", "d3-geo-projection@2")
Insert cell
// world = d3.json("https://unpkg.com/world-atlas@1/world/110m.json")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more