Published
Edited
Jul 17, 2018
3 forks
2 stars
Also listed in…
Visualizations
Insert cell
Insert cell
{
var zero = 1e-6;
var normals = [
{ x: 0, y: 0, z: 1, i: 0 },
{ x: 0, y: 1, z: 0, i: 1 },
{ x: 1, y: 0, z: 0, i: 2 },
]
// Parallel coordinates
var colorScale = d3.scale.category10();
var colorScale = d3.scale.ordinal()
.range(["#f00", "#0f0", "#00f"])
function color(d) {
return colorScale(d.i);
}

// "Globe" -> Unit sphere
var scale = (map_width - 1) / 2 / Math.PI * 2.5
var projection = d3.geo.orthographic()
.translate([map_width/2, map_height / 2])
.scale(scale)
.rotate([0,0,0])
.clipAngle(90)

var path = d3.geo.path()
.projection(projection);
var graticule = d3.geo.graticule();
var svg = d3.select(DOM.svg())
.attr('width',width)
.attr('height',map_height)
var left = svg.append("g")
.attr("transform", "translate(100, 0)")
left.selectAll("line.normal")
.data(normals)
.enter().append("line").classed("normal", true)
.attr({
stroke: color,
x1: map_width/2,
y1: map_height/2,
x2: getX,
y2: getY
})
left.append("path")
.datum(graticule)
.attr("class", "graticule")
.attr("d", path)
.attr('fill','none')
.attr('stroke','#aaa')
.attr('stroke-width',0.5)
left.selectAll("circle.normal")
.data(normals)
.enter().append("circle").classed("normal", true)
.attr({
r: 5,
fill: color,
cx: getX,
cy: getY
})
trackball(svg).on("rotate", function(rot) {
//update the rotation in our projection
projection.rotate(rot);
//redraw our visualization with the updated projection
left.selectAll("path.graticule")
.attr("d", path)
left.selectAll("circle.normal")
.attr({
cx: getX,
cy: getY
})
left.selectAll("line.normal")
.attr({
x2: getX,
y2: getY
})

//update the parallel coordinates
var rotated = normals.map(function(n) {
var ll = unit2latlon(n);
ll[0] += rot[0];
ll[1] += rot[1];
var r = latlon2unit(ll)
r.i = n.i;
return r;
})
/*
pc.data(rotated)
.render();
*/

})

function getX(d) {
var ll = unit2latlon(d);
return projection(ll)[0]
}
function getY(d) {
var ll = unit2latlon(d);
return projection(ll)[1]
}
// convert our unit vectors into lat/lon
function unit2latlon(v) {
//http://stackoverflow.com/questions/5674149/3d-coordinates-on-a-sphere-to-latitude-and-longitude
var r = 1;
var theta = Math.acos(v.x/r);
var phi = Math.atan(v.y/(v.z ? v.z : zero));
// lat, lon
return [90 - rad2deg(theta), rad2deg(phi)]
}
function rad2deg(r) {
return r * 180/Math.PI;
}
function deg2rad(d) {
return d * Math.PI/180;
}
function latlon2unit(latlon) {
var lat = latlon[0];
var lon = latlon[1];
if(!lat) lat = zero;
if(!lon) lon = zero;
lat = deg2rad(lat);
lon = deg2rad(lon);
// we switch the given formulation with z -> x and y <-> z
var z = Math.cos(lat) * Math.cos(lon);
var y = Math.cos(lat) * Math.sin(lon);
var x = Math.sin(lat)
return {x: x, y:y, z: z}
}
yield svg.node();
}
Insert cell
map_width = 500
Insert cell
map_height = 500
Insert cell
scale = (map_width - 1) / 2 / Math.PI * 2.5
Insert cell
projection = d3.geo.orthographic()
.translate([map_width/2, map_height / 2])
.scale(scale)
Insert cell
function trackball(svg) {
svg
.on("mousedown", mousedown)
.on("mousemove", mousemove)
.on("mouseup", mouseup);
function trackballAngles(pt) {
// based on http://www.opengl.org/wiki/Trackball
// given a click at (x,y) in canvas coords on the globe (trackball),
// calculate the spherical coordianates for the point as a rotation around
// the vertical and horizontal axes
var r = projection.scale();
var c = projection.translate();
var x = pt[0] - c[0], y = - (pt[1] - c[1]), ss = x*x + y*y;


var z = r*r > 2 * ss ? Math.sqrt(r*r - ss) : r*r / 2 / Math.sqrt(ss);

var lambda = Math.atan2(x, z) * 180 / Math.PI;
var phi = Math.atan2(y, z) * 180 / Math.PI
return [lambda, phi];
}


function composedRotation(λ, ϕ, γ, δλ, δϕ) {
λ = Math.PI / 180 * λ;
ϕ = Math.PI / 180 * ϕ;
γ = Math.PI / 180 * γ;
δλ = Math.PI / 180 * δλ;
δϕ = Math.PI / 180 * δϕ;
var = Math.sin(λ), = Math.sin(ϕ), = Math.sin(γ),
sδλ = Math.sin(δλ), sδϕ = Math.sin(δϕ),
= Math.cos(λ), = Math.cos(ϕ), = Math.cos(γ),
cδλ = Math.cos(δλ), cδϕ = Math.cos(δϕ);

var m00 = -sδλ * sλ * cϕ + (sγ * sλ * sϕ + cγ * cλ) * cδλ,
m01 = -sγ * cδλ * cϕ - sδλ * sϕ,
m02 = sδλ * cλ * cϕ - (sγ * sϕ * cλ - sλ * cγ) * cδλ,
m10 = - sδϕ * sλ * cδλ * cϕ - (sγ * sλ * sϕ + cγ * cλ) * sδλ * sδϕ - (sλ * sϕ * cγ - sγ * cλ) * cδϕ,
m11 = sδλ * sδϕ * sγ * cϕ - sδϕ * sϕ * cδλ + cδϕ * cγ * cϕ,
m12 = sδϕ * cδλ * cλ * cϕ + (sγ * sϕ * cλ - sλ * cγ) * sδλ * sδϕ + (sϕ * cγ * cλ + sγ * sλ) * cδϕ,
m20 = - sλ * cδλ * cδϕ * cϕ - (sγ * sλ * sϕ + cγ * cλ) * sδλ * cδϕ + (sλ * sϕ * cγ - sγ * cλ) * sδϕ,
m21 = sδλ * sγ * cδϕ * cϕ - sδϕ * cγ * cϕ - sϕ * cδλ * cδϕ,
m22 = cδλ * cδϕ * cλ * cϕ + (sγ * sϕ * cλ - sλ * cγ) * sδλ * cδϕ - (sϕ * cγ * cλ + sγ * sλ) * sδϕ;
var γ_ ,ϕ_ , λ_;
if (m01 != 0 || m11 != 0) {
γ_ = Math.atan2(-m01, m11);
ϕ_ = Math.atan2(-m21, Math.sin(γ_) == 0 ? m11 / Math.cos(γ_) : - m01 / Math.sin(γ_));
λ_ = Math.atan2(-m20, m22);
} else {
γ_ = Math.atan2(m10, m00) - m21 * λ;
ϕ_ = - m21 * Math.PI / 2;
λ_ = λ;
}
return([λ_ * 180 / Math.PI, ϕ_ * 180 / Math.PI, γ_ * 180 / Math.PI]);
}
var m0 = null,
o0;

var dispatch = d3.dispatch("rotate")
function mousedown() { // remember where the mouse was pressed, in canvas coords
m0 = trackballAngles(d3.mouse(svg[0][0]));
o0 = projection.rotate();
d3.event.preventDefault();
}

function mousemove() {
if (m0) { // if mousedown
var m1 = trackballAngles(d3.mouse(svg[0][0]));
// we want to find rotate the current projection so that the point at m0 rotates to m1
// along the great circle arc between them.
// when the current projection is at rotation(0,0), with the north pole aligned
// to the vertical canvas axis, and the equator aligned to the horizontal canvas
// axis, this is easy to do, since D3's longitude rotation corresponds to trackball
// rotation around the vertical axis, and then the subsequent latitude rotation
// corresponds to the trackball rotation around the horizontal axis.
// But if the current projection is already rotated, it's harder.
// We need to find a new rotation equivalent to the composition of both
// Choose one of these three update schemes:
// Best behavior
var o1 = composedRotation(o0[0], o0[1], o0[2], m1[0] - m0[0], m1[1] - m0[1])


// move to the updated rotation
dispatch.rotate(o1);

}
}

function mouseup() {
if (m0) {
mousemove();
m0 = null;
}
}
return dispatch;
}
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more