Public
Edited
Dec 18, 2022
2 stars
Insert cell
Insert cell
Insert cell
data_faram = FileAttachment("competition.xlsx").xlsx()
Insert cell
data_faram_new0 = data_faram.sheet(0, {headers: true})
Insert cell
data_faram_new1 = data_faram.sheet(1, {headers: true})
Insert cell
Insert cell
LoL_2021 = FileAttachment("League of Legends 2021 World Championship Play-In Groups Statistics - Raw Data@1.csv").csv({typed:true})
Insert cell
Insert cell
Plot.plot({
width : 900,
height : 300,
grid : true,
facet: {
data: LoL_2021,
x: "Result",
margin: 30
},
marks: [
Plot.barY(LoL_2021, {x: "Team", y: "Dragons For", fill:"Team"}),
//Plot.ruleY([0, 2000,3000]),
//Plot.text(bd, {x: "data_b", y: "count_b", fill: "age" , dy: , text: d=>d["count_b"]}),
], color: { range: colors, legend: true},
margintop: 30})
Insert cell
colors = ["#7fa074","#90719f","#2c4b27","#2d223c","#dec5da","#c1d1aa","#574571","#0e2810","#b695bc","#466c4b","#ffa074","#9a719f","#2f4b27","#22223c", "orange", "brown","#af9980"]
Insert cell
Insert cell
viewof select_date = Inputs.select(new Set(LoL_2021.map(d => d["Team"])), {label: "Команда"})
Insert cell
Plot.plot({
width : 700,
height : 200,
grid : true,
marks: [
Plot.barX(LoL_2021.filter(y=> y.Team==select_date&& y.Result=='W' ), Plot.groupY({x: "mean"}, {y: "Player", x: "Kills", fill:"Player"})),
], color: { range: colors, legend: true},
margintop: 30})
Insert cell
Insert cell
Plot.plot({
x: {
percent: true
},
marks: [
Plot.barX(LoL_2021.filter(y=> y.Result=='W' ), Plot.stackX(Plot.groupZ({x: "proportion"}, {fill: "Team"}))),
Plot.text(LoL_2021.filter(y=> y.Result=='W' ), Plot.stackX(Plot.groupZ({x: "proportion", text: "first"}, {z: "Team", text: "Team"}))),
Plot.ruleX([0, 1])
]
})
Insert cell
Insert cell
function new_l(QQ,name) {
var n1 ={"City": 0,"N": 0}
var l = [];
l[0] = {"City": name,"N": null}
for (var i = 1; i < QQ.length+1; i++) {
n1 ={"City": QQ[i-1]["Страна"]+"//"+QQ[i-1]["Город"],"N": QQ[i-1]["Численность население"]}
l[i]= n1;
}
return l;
}
Insert cell
viewof select_date1 = Inputs.select(new Set(data_faram_new1.map(d => d["Страна"])), {label: "Страна"})
Insert cell
new_data_faram = new_l(data_faram_new1.filter(y=> y.Страна==select_date1).slice(0,20),select_date1)
Insert cell
Sunburst(new_data_faram, {
path: (d) => d.City.replaceAll("//", "\/"),
label: (d) => d?.City.split("//").pop()+(d?.N!=null?"("+String(d.N)+")":""),
value: (d) => d?.N,
title: (d, n) => [n.id, n.value.toLocaleString()].join("\n"),
width,
height: 800
})
Insert cell
import {Sunburst} from "@d3/sunburst"
Insert cell
Pack(new_data_faram, {
path: (d) => d.City.replaceAll("//", "\/"),
label: (d) => d.City.split("//").pop()+(d.N!=null?"\n("+String(d.N)+")":"..."),
value: (d) => d?.N,
//title: (d, n) => [n.id, n.value.toLocaleString()].join("\n"),
width,
height: 700
})
Insert cell
import {Pack} from "@d3/pack"
Insert cell
League of Legends 2021 World Championship Play-In Groups Statistics - Raw Data@1.csv
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more