Published
Edited
Jul 28, 2020
9 stars
Also listed in…
Season 1
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
allegationsByOfficerPrecinct = d3.csvParse(
await FileAttachment("allegations-per-officer-perprecinct.csv").text()
)
Insert cell
withPrecinct = allegationsByOfficerPrecinct
.filter(d => !!d.command_at_incident)
.sort((a, b) => b.count - a.count)
// .slice(0, 2000)
Insert cell
Insert cell
topOfficers = 200
Insert cell
Insert cell
Insert cell
Insert cell
// parseJson(
// nodes.map(d => {
// return {
// id: d.id,
// name: d.name,
// total: d.total,
// isPrecinct: d.isPrecinct
// };
// })
// )
Insert cell
Insert cell
// parseJson(links)
Insert cell
Insert cell
officerColorScale = d3.scaleSequential([0, 60], d3.interpolateBlues)
// .scaleLinear()
// .domain([0, 60])
// .range(['#2c7fb8', '#2c7fb8'])
Insert cell
officerStrokeScale = d3
.scaleLinear()
.domain([0, 60])
.range([0.25, 5])
Insert cell
height = 750
Insert cell
Insert cell
simpleSVGMap = {
// we create an SVG with the width and height specified
const svg = d3
.create("svg")
.attr("width", width)
.attr("height", height);

svg
.append("g")
.selectAll("path")
.data(precinctGeometry)
.join("path")
// This line renders our population data
// .attr("fill", d => populationColor(populationByCounty.get(d.id)))
.attr("fill", d => {
if (overlappingPrecincts.get(d.id)) {
return "seagreen";
} else {
return "lightgray";
}
})
.attr("d", d3.geoPath(projection));

svg
.append("g")
.selectAll("circle.centroid")
.data(pGeomCentroids)
.join("circle")
.classed("centroid", true)
// This line renders our population data
// .attr("fill", d => populationColor(populationByCounty.get(d.id)))
.attr("fill", d => {
if (overlappingPrecincts.get(d.precinct)) {
return "black";
} else {
return "gray";
}
})
.attr("r", 5)
.attr(
"transform",
d => `translate(${projection(d.centroid.geometry.coordinates)})`
)
.attr("d", d3.geoPath(projection));

// we need to return a DOM element.
// the .node() function returns the DOM element corresponding to the d3 selection.
return svg.node();
}
Insert cell
overlappingPrecincts = new Map(
precincts
.filter(d => !!centroidLookup.get(weirdToNormal(d.id)))
.map(d => [weirdToNormal(d.id), d.id])
)
Insert cell
// svgbubbles
Insert cell
officerRadiusScale = d3
.scaleLog()
.domain(d3.extent(nodes.filter(d => !d.isPrecinct), d => d.total))
.range([2, 12])
Insert cell
precinctRadiusScale = d3
.scaleLinear()
.domain(d3.extent(nodes.filter(d => d.isPrecinct), d => d.total))
.range([2, 20])
Insert cell
Insert cell
canvasBubbles
Insert cell
// parseJson(canvasBubbles)
Insert cell
function parseJson(data) {
let parser = new json2csv.Parser();
let csv = parser.parse(data);
return csv;
}
Insert cell
Insert cell
md`## Precinct Geometries
`
Insert cell
pGeom = d3.json("https://data.cityofnewyork.us/resource/kmub-vria.json")
Insert cell
precinctGeometry = pGeom.map(d => {
return {
type: "Feature",
id: d.precinct,
precinct: d.precinct,
geometry: d.the_geom
};
})
Insert cell
projection = d3.geoAlbersUsa().fitSize([width, height], {
type: "FeatureCollection",
features: precinctGeometry
})
Insert cell
ejProjection = d3
.geoTransverseMercator()
.rotate([76 + 35 / 60, -40])
.fitExtent([[10, 10], [960 - 20, 500 - 20]], {
type: "FeatureCollection",
features: precinctGeometry
})
Insert cell
Insert cell
projection([-74.01550862599652, 40.70170515792238])
Insert cell
centroidLookup = new Map(pGeomCentroids.map(d => [d.precinct, d.centroid]))
Insert cell
pGeom.map(d => d.precinct)
Insert cell
weirdToNormal = function(pct) {
return String(Number(pct.split(" ")[0]));
}
Insert cell
weirdToNormal("075 PCT")
Insert cell
margin = ({ top: 0, right: 20, bottom: 30, left: 20 })
Insert cell
Insert cell
Insert cell
require('d3-jetpack')
Insert cell
Insert cell
d3tip = require('d3-tip')
Insert cell
json2csv = require("json2csv")
Insert cell
turf = require("@turf/turf")
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more