Public
Edited
Apr 5, 2022
1 fork
1 star
Insert cell
Insert cell
<svg width="1000" height="500">
<g id="countries"></g>
<g id="countrysparklines"></g>
</svg>
Insert cell
map = d3.select(mapContainer)
Insert cell
import {getMapData, drawMapLayer} with {projection} from "@emfielduva/dvlib_maps"
Insert cell
world = getMapData("world110m")
Insert cell
mapLayers = {
let mapLayers = [];
mapLayers["countries"] = drawMapLayer(map,"countries",world.features,world.idField);
return mapLayers;
}
Insert cell
<style>
#countries path {fill: #fefefe; stroke: #efefef;}
#countrysparklines line {stroke: #777; stroke-width: 0.5}
#countrysparklines g {opacity: 0.5;}
#countrysparklines g:hover {opacity: 1;}
</style>
Insert cell
Insert cell
Insert cell
gdp = FileAttachment("world-gdp-growth.csv").csv()
Insert cell
import {toNum} from "@emfielduva/dvlib"
Insert cell
Insert cell
First we need to get the **centroid points** of the countries to put the circles on.
Insert cell
projection = d3.geoMercator()
Insert cell
import {geoCentroids} with {projection} from "@emfielduva/dvlib_maps"
Insert cell
countryCentroids = {
let centroids = geoCentroids(world.features, "id");
return d3.index(centroids, d => d["name"]); // return it as an indexed map by country "name". It's just easier to access this way.
}
Insert cell
Insert cell
getCoord = (countryCode) => {
let coord = "";
// in matching across datasets, they may not all have a match. This will test first and return only when it does
if (typeof(countryCentroids.get(countryCode)) !== "undefined") {
coord = countryCentroids.get(countryCode).coord;
}
return coord;
}
Insert cell
countryGroups = map.select("#countrysparklines")
.selectAll(".countrySparkline")
.data(gdp)
.join("g")
//.attr("x", d => projection(getCoord(d["Country Code"]))[0])
//.attr("y", d => projection(getCoord(d["Country Code"]))[1])
.attr("transform", d => "translate("
+ projection(getCoord(d["Country Code"]))[0] + " "
+ projection(getCoord(d["Country Code"]))[1]
+ ")")
.attr("id", d => "sl_"+d["Country Code"]) // to name each one by it's name, prepending "sl_" to the name.
.classed("countrySparkline", true);
Insert cell
Insert cell
scaleX = d3.scaleLinear().domain([1967,2011]).range([2,28]);
Insert cell
scaleY = d3.scaleLinear().domain([-20,20]).range([20,0]);
Insert cell
Insert cell
gdp_pivot = FileAttachment("world-gdp-growth_pivot.csv").csv()
Insert cell
countryGroups.each((d,i,nodes) => {
let thisCountryCode = d["Country Code"];
let spark = d3.select(nodes[i]).selectAll("line")
.data(gdp_pivot)
.join("line")
.attr("x1", d=>scaleX(+d.Year)).attr("y1",scaleY(0))
.attr("x2", d=>scaleX(+d.Year)).attr("y2",d=>scaleY(+d[thisCountryCode]))
.style("stroke", d => +d[thisCountryCode] > 0 ? "green" : "red");
})
Insert cell
Insert cell
mapLayers["countries"].style("visibility", 'hidden')
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more