Published
Edited
Aug 18, 2020
3 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
plot_1 = {
const svg = d3
.create("svg")
.attr("width", width)
.attr("height", height)
.attr("font-family", "sans-serif")
.attr("font-size", 10);

const group2 = svg.append('g');

group2
.selectAll("rect")
.data(series)
.join("g")
.attr("fill", d => color(d.key))
.selectAll("rect")
.data(d => d)
.join("rect")
.attr("x", d => xScale2(d[0]))
.attr("y", (d, i) => yScale2(d.data.Family))
.attr("width", d => xScale2(d[1]) - xScale2(d[0]))
.attr("height", yScale2.bandwidth())
// tooltip
.on('mouseover', function(d, i) {
tooltip
.html(
`<div style="font-family: sans-serif">Family: ${d.data.Family}</div>
<div style="font-family: sans-serif">Category: ${
d.key
} - ${Math.round(d[1] * 100 - d[0] * 100)}%</div>
<div style="font-family: sans-serif">#Species measured: ${
d.data.N
}</div>`
)
.style('visibility', 'visible');
d3.select(this)
.transition()
.attr('fill', hoverColor);
})
.on('mousemove', function() {
tooltip
.style('top', d3.event.pageY + 10 + 'px')
.style('left', d3.event.pageX + 10 + 'px');
})
.on('mouseout', function() {
tooltip.html(``).style('visibility', 'hidden');
d3.select(this)
.transition()
.attr('fill', d => color(d.key));
});

// add a group for the y-axis

group2
.append("g")
.call(yAxis)
.selectAll('text')
.style("font-size", 12)
.style("cursor", "pointer")
.on(
"click",
d => window.open(`https://en.wikipedia.org/wiki/${d}`)
// this link takes you to the Kew SID
//window.open(`https://data.kew.org/sid/SidServlet?Clade=&Order=&Family=${d.toUpperCase()}&APG=off&Genus=&Species=&StorBehav=0&DsFlag=on`)
);

// add a group for the x-axis
group2
.append("g")
// we have to move this group down to the bottom of the vis
.attr("transform", `translate(0, ${height})`)
.call(xAxis)
//add a label for the x-axis
.append("text")
.attr("fill", "black")
.attr("font-family", "sans-serif")
.attr("x", width / 2)
.attr("y", 40)
.style("font-size", 15)
.text("Seed dispersal mode proportion");

// LEGEND

// Legend as a group
const legend = svg
.append("g")
// Apply a translation to the entire group
.attr("transform", `translate(${250}, ${0})`);

const size = 30;
const border_padding = 15;
const item_padding = 60;
const text_offset = 20;

// Boxes
legend
.selectAll("boxes")
.data(legend_)
.enter()
.append("rect")
.attr("y", border_padding)
.attr("x", (d, i) => border_padding + i * (size + item_padding))
.attr("width", size)
.attr("height", size)
.style("fill", d => colours(d));

// Labels
legend
.selectAll("labels")
.data(legend_)
.enter()
.append("text")
.attr("y", border_padding + 16)
.attr(
"x",
(d, i) =>
border_padding + i * (size + item_padding) + size / 2 + text_offset
)
.text(d => d)
.attr("text-anchor", "left")
.style("alignment-baseline", "middle")
.style("font-family", "sans-serif")
.style("font-size", 15);

// ORDER LINES
const orders = svg.append("g");
orders
.selectAll("orderLines")
.data(lineOrders)
.join("line")
.attr("x1", d => d.Dist)
.attr("y1", d => yScale2(d.O1))
.attr("x2", d => d.Dist)
.attr("y2", d => yScale2(d.O2) + yScale2.bandwidth())
.attr("stroke-width", 3)
.attr("stroke", "black");

orders
.selectAll("orderText")
.data(lineOrders)
.join("text")
.attr("x", d => d.Dist + 6)
.attr(
"y",
d =>
yScale2.bandwidth() +
yScale2(d.O1) +
(yScale2(d.O2) - yScale2(d.O1)) / 2
)
.text(d => d.Order)
.style("font-family", "sans-serif")
.style("font-size", 12);

return svg.node();
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more