Public
Edited
Aug 13, 2024
Comments locked
2 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
sieve
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
rules = records.filter((row) => filter.includes(row.Section))
Insert cell
sections = synopsis.map(({ Section, ...rest }) => Section)
Insert cell
synopsis = d3
.groups(records, (row) => row.Section)
.map((row) => ({ Section: row[0], Count: row[1].length }))
Insert cell
lookup = Object.fromEntries(
query.map((item) => [
item[0],
Object.fromEntries(
d3.groups(item[1].map(transmogrify), (rule) => {
let section = rule.Section;
delete rule.Section;
return section;
})
)
])
)
Insert cell
psl = {
let data = {};
for (let [tld, rules] of Object.entries(
/* perform a deep copy */ JSON.parse(JSON.stringify(dataset))
)) {
for (let rule of rules) {
aggregate(data, rule);
}
}
return data;
}
Insert cell
dataset = Object.fromEntries(
query.map((item) => [
item[0],
item[1].map(transmogrify)
])
)
Insert cell
query = d3.groups(rules, (rule) => rule.Col1)
Insert cell
exceptions = {
let exceptions = { total: 0, sections: [], items: [] };
if (true in summary)
for (let [k, v] of Object.entries(summary[true])) {
exceptions.total += v.length;
exceptions.sections.push.apply(exceptions.sections, [k]);
exceptions.items.push.apply(exceptions.items, v);
}
return exceptions;
}
Insert cell
summary = {
let summary = {};
for (let [k, v] of Object.entries(
Object.fromEntries(
d3.rollup(
records,
(r) => r.map(transmogrify),
(r) => r.Exception,
(r) => r.Section
)
)
)) {
summary[!!k] = Object.fromEntries(v);
}
return summary;
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more