Published
Edited
Apr 21, 2022
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
snyderP = 1.0 + params.altitude / earthRadius;
Insert cell
Insert cell
Insert cell
Insert cell
dY = params.altitude * Math.sin(params.tilt / degrees);
Insert cell
Insert cell
dZ = params.altitude * Math.cos(params.tilt / degrees);
Insert cell
Insert cell
visibleYextent = 2 * dZ * Math.tan(0.5 * params.fieldOfView / degrees)
Insert cell
scale = earthRadius * numPixelsY / visibleYextent;
Insert cell
Insert cell
yShift = dY * numPixelsY / visibleYextent;
Insert cell
projection = d3.geoSatellite()
.scale(scale)
.translate([width / 2, yShift + numPixelsY / 2])
.rotate([-params.longitude, -params.latitude, params.rotation])
.tilt(params.tilt)
.distance(snyderP)
.preclip(preclip)
.precision(0.1)
Insert cell
Insert cell
Insert cell
preclip = {
const tilt = params.tilt / degrees;
const alpha = Math.acos(snyderP * Math.cos(tilt) * 0.999);
const clipDistance = geoClipCircle(Math.acos(1 / snyderP) - 1e-6);
return alpha ? geoPipeline(
clipDistance,
geoRotatePhi(Math.PI + tilt),
geoClipCircle(Math.PI - alpha - 1e-4), // Extra safety factor needed for large tilt values
geoRotatePhi(-Math.PI - tilt)
) : clipDistance;
}
Insert cell
function geoPipeline(...transforms) { // Move to Appendix?
return sink => {
for (let i = transforms.length - 1; i >= 0; --i) {
sink = transforms[i](sink);
}
return sink;
};
}
Insert cell
geoClipCircle = d3.geoClipCircle;
Insert cell
function geoRotatePhi(deltaPhi) {
const cosDeltaPhi = Math.cos(deltaPhi);
const sinDeltaPhi = Math.sin(deltaPhi);
return sink => ({
point(lambda, phi) {
const cosPhi = Math.cos(phi);
const x = Math.cos(lambda) * cosPhi;
const y = Math.sin(lambda) * cosPhi;
const z = Math.sin(phi);
const k = z * cosDeltaPhi + x * sinDeltaPhi;
sink.point(Math.atan2(y, x * cosDeltaPhi - z * sinDeltaPhi), Math.asin(k));
},
lineStart() { sink.lineStart(); },
lineEnd() { sink.lineEnd(); },
polygonStart() { sink.polygonStart(); },
polygonEnd() { sink.polygonEnd(); },
sphere() { sink.sphere(); }
});
}
Insert cell
Insert cell
earthRadius = 6371; // Spherical approximation: average radius in km
Insert cell
numPixelsY = width * 0.6;
Insert cell
degrees = 180 / Math.PI;
Insert cell
grid = ({
major: d3.geoGraticule().step([15,15])(),
minor: d3.geoGraticule().step([5,5])(),
horizon: ({type: "Sphere"})
})
Insert cell
land = Generators.observe(notify => {
const mousedown = event => { event.target.form && notify(land110); };
const mouseup = event => { event.target.form && notify(land50); };
notify(land50);
window.addEventListener("mousedown", mousedown);
window.addEventListener("mouseup", mouseup);
return () => {
window.removeEventListener("mousedown", mousedown);
window.removeEventListener("mouseup", mouseup);
};
})
Insert cell
land50 = fetch("https://cdn.jsdelivr.net/npm/world-atlas@1/world/50m.json")
.then(response => response.json())
.then(world => topojson.feature(world, world.objects.land));
Insert cell
land110 = fetch("https://cdn.jsdelivr.net/npm/world-atlas@1/world/110m.json")
.then(response => response.json())
.then(world => topojson.feature(world, world.objects.land));
Insert cell
topojson = require("topojson-client@3")
Insert cell
d3 = require("d3-geo@1", "d3-geo-projection@2")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more