Public
Edited
Aug 31, 2023
7 forks
16 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
marCasadoAir = FileAttachment("marCasadoAir@5.csv").csv({typed: true}) // Date issue
Insert cell
marCasadoSea = FileAttachment("marCasadoSea@4.csv").csv({typed: true}) // Date issue
Insert cell
Insert cell
// Write code to create a database called marCasadoDB, with tables 'air' and 'sea':
marCasadoDB = DuckDBClient.of({air: marCasadoAir, sea: marCasadoSea})
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
marCasadoDB
SELECT air.month
, meanPressure
, windSpeed
, PAR
, meanHumidity
, windDirection
, sea.maxTide
, sea.minTide
, sea.salinity
, sea.seaSurfaceTemp as SST
, CASE WHEN date_part('month', air.month) IN (10, 11, 12, 1, 2, 3) THEN 'hot moist' ELSE 'cool dry' END AS "season"
FROM air
JOIN sea
ON air.month = sea.month
Insert cell
Insert cell
marCasado
SELECT date_part('month', month) as month
, mean(SST) as meanSST
FROM marCasado
GROUP BY date_part('month', month)
Insert cell
Insert cell
// Write Plot code to create a heatmap of sea surface temperature (SST) by year and month
Plot.plot({
marks: [
Plot.cell(marCasado, {
y: d => d.month.getUTCFullYear(),
x: d => d.month.getUTCMonth(),
fill: "SST",
tip: true
})
],
width: 500,
height: 250,
y: {tickFormat: "Y", padding: 0},
x: {padding: 0, tickFormat: Plot.formatMonth()}
})
Insert cell
Insert cell
Insert cell
import {PlotMatrix} with {marCasado as data} from "@observablehq/autoplot-matrix"
Insert cell
// Use the PlotMatrix function (expecting marCasado) to create a pair plot:
PlotMatrix(marCasado)
Insert cell
Insert cell
Insert cell
Insert cell
ML = require("https://www.lactame.com/lib/ml/6.0.0/ml.min.js")
Insert cell
Insert cell
import {scale, asMatrix} from "@chrispahm/hierarchical-clustering"
Insert cell
Insert cell
Insert cell
// Create a scaled version of the numeric variables
marCasadoScaled = scale(marCasado.map(({ season, month, ...rest }) => rest))
Insert cell
Insert cell
// Convert to an array of arrays, just containing the values (no keys):
marCasadoArray = marCasadoScaled.map(Object.values)
Insert cell
Insert cell
// Perform principal component analysis:
marCasadoPCA = new ML.PCA(marCasadoArray) // Already scaled above - otherwise can add {scale: true} here!
Insert cell
Insert cell
Insert cell
// Get variance explained by each PC:
variancePC = marCasadoPCA.getExplainedVariance()
Insert cell
Insert cell
// Get cumulative variance explained:
cumulativeVariance = marCasadoPCA.getCumulativeVariance()
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
import {viewof loadings} with {marCasadoScaled as food_scaled} from "@chrispahm/principal-component-analysis"
Insert cell
viewof loadings
Insert cell
import {viewof scores} with {marCasadoScaled as food_scaled, marCasado as food} from "@chrispahm/principal-component-analysis"
Insert cell
viewof scores
Insert cell
scoresCombined = scores
.map((d, i) => ({ ...d, Name: marCasado[i].month, season: marCasado[i].season }))
Insert cell
Plot.plot({
marks: [
Plot.dot(scoresCombined, { x: "PC1", y: "PC2", fill: "season", r: 5 }),
Plot.arrow(loadings, {
x1: 0, x2: d => d.PC1 * scalingFactor, y1: 0, y2: (d) => d.PC2 * scalingFactor
}),
Plot.text(loadings, {
x: (d) => d.PC1 * scalingFactor, y: (d) => d.PC2 * scalingFactor,
text: "Variable",
dy: -5,
dx: 30,
fill: "black",
stroke: "white",
fontSize: 14
})
],
color: { legend: true },
inset: 20
})
Insert cell
scalingFactor = 5
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
// Alternatively (without an import):

loadingsOption = marCasadoPCA
.getEigenvectors()
.data.map((d, i) => ({
PC1: d[0],
PC2: d[1],
Variable: Object.keys(marCasadoScaled[0])[i]
}))
Insert cell
// Alternatively to get score (projections into PC space):

scoresOption = marCasadoPCA.predict(marCasadoArray).data.map((d,i) => ({month: marCasado[i].month,
season: marCasado[i].season,
PC1: d[0],
PC2: d[1]}))
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more