Published
Edited
Nov 28, 2020
2 stars
Insert cell
Insert cell
Insert cell
Insert cell
frame = t => {
// const view = m.lookAt([],[4,10,4],[4,4,4],[0,0,-1]);
const view = m.lookAt([],[6,6,6],[4,4,4],[0,1,0]);
const project = m.ortho([],-4,4,-4,4,-1,1);
//const background = svgt`<rect width=512 height=512 fill='#ffffff'/>`;
const background = svgt`<image href="${backgroundUrl}" width=512 height=512 preserveAspectRatio="xMaxYMid slice"/>`;
const blocks = g(background,...range(8).flatMap(z=>range(8).map(x=>block(z,x))))
//const starField = g(...stars.map(star(t)));
return svgtBox(transform(project,changingView(t),blocks),512,512);
}
Insert cell
Insert cell
block = (z,x) => {
const coords = [[0,0,1],[1,0,1],[1,0,0],[1,1,0],[0,1,0],[0,1,1]];
const attrs = {
fill:(z+x)%2?'black':'white',
}
const lg = x => 1/(1+Math.exp(-x));
//const h = (8-Math.min(cam.pos *x,z))
const y = x;//lg(-z+20*cam.pos-5) * x;
const h = 2.5; //1+5*Math.sin((7-x+z)/14);
return translate([x,y,z],scale([1,h,1],svgt`<polygon points="${coords}" ${attrs}/>`))
}
Insert cell
// a view matrix for looking at [4,4,4] from startPos (t=0)
// moving to endPos (t=1)
changingView = t => {
const e = d3.easeCubicInOut(t);
const startPos = [4,10,4];
const endPos = [10,4,4];
const pivot = [7,7,0];
const startDir = v.sub([],startPos,pivot);
const endDir =v.sub([],endPos,pivot)
const axis = v.cross3([],startDir,endDir);
const endAngle = v.angleBetween3(startDir,endDir);
const camPos = v.add([],pivot,m.mulV([],m.rotationAroundAxis33([],axis,e*endAngle,true),startDir))
const top = m.mulV([],m.rotationAroundAxis33([],[1,0,0],e*0.5*Math.PI,true),[0,0,-1]);
//const top = m.mulV([],m.rotationAroundAxis33([],[0,0,1],t*0.5*Math.PI,true),[1,0,0]);
return m.lookAt([],camPos,[4,4,4],top)
}
Insert cell
stars = range(500).map(() => [Math.random()*40-20, Math.random()*40-20, Math.random()*40-20])
Insert cell
star = t => xyz =>
m.mulV([],changingView(t),[...xyz,0])[2]<0
? svgt`<circle cx="${xyz[0]}" cy="${xyz[1]}" ${xyz[2]} r=5 stroke="black" fill="none"/>`
: svgt``;
Insert cell
backgroundUrl = await FileAttachment('spaceinvaders.jpg').url()
Insert cell
import {svgtScreenBox,svgtBox,svgt,g,translate,scale, transform} from '@sanderevers/svg-transformations'
Insert cell
import {form} from '@mbostock/form-input'
Insert cell
range = n => [...Array(n).keys()]
Insert cell
m = require('https://bundle.run/@thi.ng/matrices@0.6.34')
Insert cell
v = require('https://bundle.run/@thi.ng/vectors@4.4.0')
Insert cell
jszip = require('https://bundle.run/jszip@3.2.0')
Insert cell
import {serialize} from '@mbostock/saving-svg'
Insert cell
backgroundBitmap = createImageBitmap(await FileAttachment("spaceinvaders.jpg").image(),256,0,768,768);

Insert cell
// adapted from @mbostock/saving-svg
function rasterize(svg) {
let resolve, reject;
const promise = new Promise((y, n) => (resolve = y, reject = n));
const image = new Image;
image.onerror = reject;
image.onload = () => {
try {
const s = 256; // makes 512x512 PNGs. Maybe a Mac thing??
const context = DOM.context2d(s, s);
context.drawImage(backgroundBitmap, 0, 0, s, s); // have to do this manually
context.drawImage(image, 0, 0, s, s); // because JPG doesn't load here (browser security?)
context.canvas.toBlob(resolve);
}
catch (e) { mutable debug=e.toString(); reject(e) }
};
image.src = URL.createObjectURL(serialize(svg));
return promise;
}
Insert cell
import {animationControl} from '@sanderevers/animation-control'
Insert cell
d3 = require('d3-ease')
Insert cell
makezip = async () => {
const nframes = 100;
const zip = new jszip();
const frames = zip.folder('frames');
for (const i of range(nframes)) {
const fi = String(1000+i).substring(1);
frames.file(`frame${fi}.png`,await rasterize(frame(i/nframes)));
}
const content = await zip.generateAsync({type:'blob'});
return content;
}
// convert -delay 2 -loop 0 frames/frame*.png out.gif
Insert cell
mutable debug = ''
Insert cell
DOM.download(() => makezip(), 'swirl.zip', "download ZIP")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more