function multivariateNormal(mean, covArray) {
const n = mean.length;
const cov = math.matrix(covArray);
return {
pdf: x => {
const c = 1 / (math.sqrt(2*math.PI)**n * math.sqrt(math.det(cov)));
return c * math.exp(
-(1/2) * math.multiply(
math.subtract(math.matrix(x), math.matrix(mean)),
math.inv(cov),
math.subtract(math.matrix(x), math.matrix(mean))
)
);
},
entropy: 0.5*math.log(math.det(cov)) + 0.5*n*(1 + math.log(2*math.PI)),
sample: n_samples => Array(n_samples).fill().map(_ => {
const L = choleskyDecomposition(cov);
const z = boxMuller(n);
return math.add(
math.matrix(mean),
math.multiply(cov, math.matrix(z))
).toArray();
}),
};
}