Published
Edited
Nov 28, 2020
3 forks
Importers
19 stars
Also listed in…
Statistics
3D
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
function multivariateNormal(mean, covArray) {
const n = mean.length;
const cov = math.matrix(covArray);
return {
// Probability Density Function
pdf: x => {
const c = 1 / (math.sqrt(2*math.PI)**n * math.sqrt(math.det(cov)));
return c * math.exp(
-(1/2) * math.multiply(
math.subtract(math.matrix(x), math.matrix(mean)),
math.inv(cov),
math.subtract(math.matrix(x), math.matrix(mean))
)
);
},
// Differential entropy
entropy: 0.5*math.log(math.det(cov)) + 0.5*n*(1 + math.log(2*math.PI)),
// Generate n samples using Cholesky Decomposition
sample: n_samples => Array(n_samples).fill().map(_ => {
const L = choleskyDecomposition(cov);
const z = boxMuller(n);
return math.add(
math.matrix(mean),
math.multiply(cov, math.matrix(z))
).toArray();
}),
};
}
Insert cell
// Usage example
{
const norm = multivariateNormal([0, 0], [[1, 0], [0, 2]]);
return [norm.entropy, norm.pdf([0, 0]), norm.sample(3)]
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
A = math.matrix([[1, cov12], [cov12, v2]])
Insert cell
// mean: [0, 0]
normal = multivariateNormal([0, 0], A)
Insert cell
Insert cell
samples2D = normal.sample(1000).map(d => ({x: d[0], y: d[1]}))
Insert cell
import {chart as densityChart} with {samples2D as data} from "@sw1227/fork-density-contours"
Insert cell
Insert cell
Insert cell
// Values of PDF in x: (-5, 5), y: (-5, 5)
data = d3.range(-5, 5, 0.1).map(y => (
d3.range(-5, 5, 0.1).map(x => (
normal.pdf([x, y])
))
))
Insert cell
imshow(data.reverse(), Math.min(width/100, 4), d3.interpolateViridis)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more