Public
Edited
Dec 15, 2022
1 fork
2 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
part2 = (gap[0][1] + 1) * 4000000 + excluded
Insert cell
gap = [...union(xs(excluded))].sort((a, b) => a[0] - b[0])
Insert cell
excluded = {
for (let y = which === "sample" ? 0 : 2638000; y <= max; y++) {
if (y % 10000 === 0) yield y;
if (union(xs(y)).size > 1) {
yield y;
break;
}
}
}
Insert cell
part1 = d3.sum([...union(xs(max/2))].map(([x1, x2]) => x2 - x1 + 1)) - b.size
Insert cell
b = new Set(signals.filter(({ by }) => by === max / 2).map((d) => d.bx))
Insert cell
function union(xs) {
const disjoint = new d3.InternSet([], String);
for (const s of xs) {
const [s1, s2] = s;
const overlaps = [...disjoint].filter(([u1, u2]) => s2 >= u1 && u2 >= s1);
if (overlaps.length === 0) {
disjoint.add(s);
} else {
for (const o of overlaps) disjoint.delete(o);
const points = overlaps.flat().concat(s);
disjoint.add(d3.extent(points));
}
}
return disjoint;
}
Insert cell
intersection = (y) =>
([p1, p2]) => {
const m = (p2[1] - p1[1]) / (p2[0] - p1[0]);
const b = p1[1] - m * p1[0];
return (y - b) / m;
}
Insert cell
xs = (y) =>
coverages
.map((c) => edges(c).filter(intersects(y)))
.filter((e) => e.length)
.map((t) => t.slice(0, 2).map(intersection(y)).sort(d3.ascending))
Insert cell
edges = (polygon) => d3.pairs(polygon.concat([polygon[0]]))
Insert cell
intersects = (y) =>
([[, y1], [, y2]]) =>
Math.min(y1, y2) <= y && y <= Math.max(y1, y2)
Insert cell
coverages = signals.map(({ sx, sy, bx, by }) => {
const d = Math.abs(bx - sx) + Math.abs(by - sy);
return [
[sx - d, sy], // left
[sx, sy + d], // top
[sx + d, sy], // right
[sx, sy - d] // bottom
];
})
Insert cell
max = which === "sample" ? 20 : 4000000
Insert cell
signals = (which === "sample" ? sample : data)
.trim()
.split("\n")
.map((l) => {
const [, sx, sy, bx, by] = l.match(
/Sensor at x=(-?\d+), y=(-?\d+): closest beacon is at x=(-?\d+), y=(-?\d+)/
);
return { sx: +sx, sy: +sy, bx: +bx, by: +by };
})
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more