Published
Edited
May 11, 2020
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
md`The overall question is to find which elementary perceptual task that can give more accurate recognition of information.

**The Accuracy Ranking of Elementary Task**
1. Position along a common scale
2. Positions along nonaligned scales
3. Length, direction, angle
4. Area
5. Volume, curvature
6. Shading, color saturation

During the experiement, they ask the participants for their judgement of the bars/segments comparison on each graph(also different types of graphs) presented and the percentage difference between smaller bar/segment and larger bar/segment`
Insert cell
Insert cell
md`They get rid of the element of color, which is a primary elementary perceptual task on graphics, and color can solve many flaws of elementary perceptual task they mentioned. Moreover, their sample grouping method does not covering all the factors that could influence the outcome of this experiment, like the gender they assigned and the "technical group" dividing method.`
Insert cell
Insert cell
md`The additional information that can be extracted from a scatter plot is the relationship between x value and y value on the graph, the elementary perceptual task that enables us to do it is the **perception of direction(slope)**, which help us find the pattern`
Insert cell
Insert cell
margin = ({
top: 30,
right: 10,
bottom: 80,
left: 80
})
Insert cell
height = 500
Insert cell
x = d3
.scaleBand()
.domain(state_data.map(d => d.x))
.range([margin.left, width - margin.right])
.padding(0.1)
Insert cell
x1 = d3
.scaleTime()
.domain(d3.extent(formattedData1, d => d.date))
.range([margin.left, width - margin.right])
Insert cell
x2 = d3
.scaleBand()
.domain(state_data2.map(d => d.x))
.range([margin.left, width - margin.right])
.padding(0.1)
Insert cell
y = d3
.scaleLinear()
.domain([0, d3.max(state_data, d => d.y)])
.range([height - margin.bottom, margin.top])
Insert cell
y1 = d3
.scaleLinear()
.domain(d3.extent(formattedData1, d => +d.price))
.range([height - margin.bottom, margin.top])
Insert cell
y2 = d3
.scaleLinear()
.domain([0, d3.max(state_data2, d => d.y)])
.range([height - margin.bottom, margin.top])
Insert cell
xAxis = g =>
g
.attr("transform", `translate(0,${height - margin.bottom})`)
.call(d3.axisBottom(x))
Insert cell
xAxis1 = g =>
g
.attr("transform", `translate(0,${height - margin.bottom})`)
.call(d3.axisBottom(x1))
Insert cell
xAxis2 = g =>
g
.attr("transform", `translate(0,${height - margin.bottom})`)
.call(d3.axisBottom(x2))
Insert cell
yAxis = g =>
g.attr("transform", `translate(${margin.left},0)`).call(d3.axisLeft(y))
Insert cell
yAxis1 = g =>
g.attr("transform", `translate(${margin.left},0)`).call(d3.axisLeft(y1))
Insert cell
yAxis2 = g =>
g.attr("transform", `translate(${margin.left},0)`).call(d3.axisLeft(y1))
Insert cell
md`## Position`
Insert cell
md`This uses position encoding as a scatter plot, it is very easily to the price difference of Microsoft stock in each month and its price pattern over time. But when the price does not has enought change, this chart might be less accurate than the line chart which has better showing of direction encoding.`
Insert cell
chart1 = {
const svg = d3.create("svg").attr("viewBox", [0, 0, width, height]);

svg.append("g").call(xAxis1);
svg.append("g").call(yAxis1);

svg
.selectAll('circle')
.data(formattedData1)
.join(enter => enter.append("circle"))
.attr("cx", d => x1(d.date))
.attr("cy", d => y1(d.price))
.attr("fill", d => "red")
.attr("r", 3)
.attr("opacity", 0.8);

svg
.append("text")
.text("Microsoft Stock Price")
.style("font-size", "15px")
.style("font-weight", "bold")
.attr("transform", "translate(400, 20)");

svg
.append("text")
.text("Year")
.attr("transform", "translate(450,480)")
.style("font-size", "12px");

svg
.append("text")
.text("Price")
.attr("transform", "translate(25,200) rotate(-90)")
.style("font-size", "12px");

return svg.node();
}
Insert cell
md`## Length `
Insert cell
md`This chart uses bar chart as the encoding of length. When the range of y axis value is not too large and the x axix value is not many, the length of bar chart can be accuratly perceived. This chart has a wide range of y axis value, thus it is not that accurate when some values are having less length differences than the large one. The dot chart might be a better choice by using better position encoding.`
Insert cell
chart2 = {
const svg = d3.create("svg").attr("viewBox", [0, 0, width, height]);

svg
.append("g")
.call(xAxis)
.selectAll("text")
.style("text-anchor", "end")
.attr("transform", "rotate(-40)");
svg.append("g").call(yAxis);

svg
.append("text")
.text("# of Cases in Each State")
.style("font-weight", "bold")
.style("font-size", "15px")
.attr("transform", "translate(400, 20)");

svg
.append("text")
.text("States")
.style("font-size", "12px")
.attr("transform", "translate(450, 480)");

svg
.append("text")
.text("# of Cases")
.style("font-size", "12px")
.attr("transform", "translate(15, 200) rotate(-90)");

svg
.selectAll("rect")
.data(state_data)
.join(enter => enter.append("rect"))
.attr("x", d => x(d.x))
.attr("y", d => y(d.y))
.attr("width", x.bandwidth())
.attr("fill", "blue")
.attr("opacity", "0.90");

svg
.selectAll("rect")
.transition()
.duration(2000)
.attr("y", d => y(d.y))
.attr("height", d => y(0) - y(d.y));

return svg.node();
}
Insert cell
md`## Angle `
Insert cell
md`This chart uses pie chart as the encoding of angle. When the smallest value and largest value are having large difference, the angle of pir chart cannot be accuratly perceived. Similar to the bar chart, the dot chart might be a better choice since it provides better accuracy by using position encoding.`
Insert cell
chart3 = {
const arcs = pie(state_data2);

const height = Math.min(width, 500);

const svg = d3
.create("svg")
.attr("viewBox", [-width / 2, -height / 2, width, height]);

const arc = d3
.arc()
.innerRadius(0)
.outerRadius(Math.min(width, height) / 2 - 1);

const arcLabel = d3
.arc()
.innerRadius((Math.min(width, height) / 2) * 0.8)
.outerRadius((Math.min(width, height) / 2) * 0.8);

const color = d3
.scaleOrdinal()
.domain(state_data2.map(d => d.x))
.range(
d3
.quantize(t => d3.interpolateSpectral(t * 0.8 + 0.1), state_data.length)
.reverse()
);

svg
.append("g")
.attr("stroke", "white")
.selectAll("path")
.data(arcs)
.join("path")
.attr("fill", d => color(d.data.x))
.attr("d", arc)
.append("title")
.text(d => `${d.data.x}: ${d.data.y.toLocaleString()}`);

svg
.append("g")
.attr("font-family", "serif")
.attr("font-size", 20)
.attr("text-anchor", "middle")
.selectAll("text")
.data(arcs)
.join("text")
.attr("transform", d => `translate(${arcLabel.centroid(d)})`)
.call(text =>
text
.append("tspan")
.attr("y", "-0.4em")
.attr("font-weight", "bold")
.text(d => d.data.x)
)

.call(text =>
text
.filter(d => d.endAngle - d.startAngle > 0.25)
.append("tspan")
.attr("x", 0)
.attr("y", "0.7em")
.attr("fill-opacity", 0.7)
.text(d => d.data.y.toLocaleString())
);

return svg.node();
}
Insert cell
pie = d3
.pie()
.sort(null)
.value(d => d.y)
Insert cell
md`## Color`
Insert cell
md`This bar chart uses color to differentiate the x axis values, it might also improve the perception of length in some way. Still the dot chart with color will probably be more accurate since using position encoding and color differentiation.`
Insert cell
chart4 = {
const svg = d3.create("svg").attr("viewBox", [0, 0, width, height]);

svg.append("g").call(xAxis2);
svg.append("g").call(yAxis2);

svg
.append("text")
.text("# of Cases in Each State")
.style("font-weight", "bold")
.style("font-size", "15px")
.attr("transform", "translate(400, 20)");

svg
.append("text")
.text("States")
.style("font-size", "12px")
.attr("transform", "translate(450, 480)");

svg
.append("text")
.text("# of Cases")
.style("font-size", "12px")
.attr("transform", "translate(15, 200) rotate(-90)");

svg
.selectAll("rect")
.data(state_data2)
.join(enter => enter.append("rect"))
.attr("x", d => x2(d.x))
.attr("y", d => y2(d.y))
.attr("width", x2.bandwidth())
.attr("fill", d => set_color(d.x))
.attr("opacity", "0.90");

svg
.selectAll("rect")
.transition()
.duration(2000)
.attr("y", d => y2(d.y))
.attr("height", d => y2(0) - y2(d.y));

svg
.append("g")
.attr("transform", "translate(150, 20)")
.append(() =>
legend({
color: set_color,
width: 700,
title: "State names"
})
);

return svg.node();
}
Insert cell
Insert cell
y3 = d3
.scaleLinear()
.domain([
0,
d3.max([d3.max(diffData, d => d.price), d3.max(diffData2, d => d.price)])
])
.nice()
.range([height - margin.bottom, margin.top])
Insert cell
y4 = d3
.scaleLinear()
.domain([
0,
d3.max([d3.max(diffData, d => d.price), d3.max(diffData2, d => d.price)])
])
.nice()
.range([height - margin.bottom, margin.top])
Insert cell
x3 = d3
.scaleTime()
.domain(d3.extent(diffData, d => d.date))
.range([margin.left, width - margin.right])
Insert cell
xDiffAxis = g =>
g
.attr("transform", `translate(0,${height - margin.bottom})`)
.call(d3.axisBottom(x3).tickSizeOuter(0))
Insert cell
yDiffAxis = g =>
g
.attr("transform", `translate(${margin.left},0)`)
.call(d3.axisLeft(y3).tickSizeOuter(0))
Insert cell
areas = d3
.area()
.curve(d3.curveCatmullRom)
.x(d => x3(d.date))
.y0(d => y3(d.price))
.y1(d => y4(d.price))
Insert cell
md`## Difference Chart`
Insert cell
md`The limitation of Curve Difference Chart is it is hard for people to judge the minimum distance between the curve in different region, so makes an aggregate line chart that can directly showing the difference would be a better choice`
Insert cell
diffChart = {
const svg = d3
.select(DOM.svg(width, diffData, diffData2))
.attr("viewBox", [0, 0, width, height]);

svg
.append("text")
.attr("class", "text")
.attr("transform", "translate(510,490)")
.style("text-anchor", "middle")
.style("font-size", "12px")
.text("Year");

svg
.append("text")
.attr("class", "text")
.attr("transform", "translate(10,222)rotate(-90)")
.style("text-anchor", "middle")
.style("font-size", "9px")
.text("Amazon Versus Google Stock Price");

svg
.append('clipPath')
.attr('id', 'high-clip')
.append('path')
.datum(diffData)
.attr('d', areas.y0(height - margin.bottom));

svg
.append('clipPath')
.attr('id', 'low-clip')
.append('path')
.datum(diffData2)
.attr('d', areas.y0(0 + margin.top));

svg
.append('path')
.datum(diffData)
.attr('clip-path', 'url(#low-clip)')
.attr('fill', '#ffaa00')
.attr('d', areas.y0(d => y3(d.price)));

svg
.append('path')
.datum(diffData2)
.attr('clip-path', 'url(#high-clip)')
.attr('fill', '#00bbff')
.attr('d', areas);

svg
.append('path')
.datum(diffData)
.attr('stroke', '#ff0000')
.attr('stroke-width', 2)
.attr('fill', 'none')
.attr('d', areas.lineY0());

svg
.append('path')
.datum(diffData2)
.attr('stroke', '#0000ff')
.attr('stroke-width', 2)
.attr('fill', 'none')
.attr('d', areas.lineY1());

xDiffAxis(svg.append('g'));

yDiffAxis(svg.append('g'));

return svg.node();
}
Insert cell
Insert cell
Insert cell
import { displayCaution } from "@info474/utilities"
Insert cell
d3 = require('d3@5')
Insert cell
stockData = d3.csv(
"https://raw.githubusercontent.com/vega/datalib/master/test/data/stocks.csv"
)
Insert cell
data = d3.csv(
"https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv",
d3.autoType
)
Insert cell
state_data1 = {
let state_data_set = [];

data.forEach(object => {
const state = object.state;

let this_state = state_data_set.find(d => d.state === state);

if (this_state === undefined) {
state_data_set.push({ state: state, cases: object.cases });
} else {
this_state.cases += object.cases;
}
});
return state_data_set.sort(function(a, b) {
return a.cases - b.cases;
});
}
Insert cell
state_data = state_data1
.map(function(d) {
return {
x: d.state,
y: +d.cases,
color: "blue"
};
})
Insert cell
state_data2 = state_data.slice(45)
Insert cell
formattedData = stockData.map(d => {
const formatTime = d3.timeParse("%b %d %Y");

return {
symbol: d.symbol,
price: d.price,
date: formatTime(d.date)
};
})
Insert cell
formattedData1 = formattedData.filter(d => d.symbol == 'MSFT').slice(60)
Insert cell
diffData = formattedData.filter(d => d.symbol == 'MSFT')
Insert cell
diffData2 = formattedData.filter(d => d.symbol == "AAPL")
Insert cell
formatTime = d3.timeParse("%B %d, %Y")
Insert cell
import { swatches, legend } from "@d3/color-legend"
Insert cell
set_color = d3.scaleOrdinal(state_data2.map(d => d.x), d3.schemeTableau10)
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more