Published
Edited
May 12, 2020
Fork of Maps LEI
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
county_data = d3.csv(
"https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv"
)
Insert cell
render_data_table(county_data.slice(0, 10))
Insert cell
md`This is the dataset of the covid-19 cases of each counties in the United States`
Insert cell
Insert cell
county_data1 = county_data.filter(d => d.date === "2020-05-10")
Insert cell
county_map = Object.assign(new Map(county_data1.map(d => [d.fips, +d.cases])))
Insert cell
data = Object.assign(new Map(county_data1.map(d => [d.fips, +d.cases])), {
title: "Covid-19 Cases"
})
Insert cell
color_scale = d3.scaleSequential(
d3.extent(county_map, d => d.cases),
d3.interpolateBuPu
)
Insert cell
color = d3.scaleQuantize([1, 1000], d3.schemeReds[9])
Insert cell
Insert cell
md`## Bubble Map`
Insert cell
import { chart as bubbleMap, radius } with {
county_map as data
} from '@d3/bubble-map'
Insert cell
bubbleMap
Insert cell
md`Bubble Map has the advantage of showing the distribution of data more effectively, especially displaying the scale of the data and the data that has relatively large scale. But when it comes to displaying small scale of the data, it might not deliver accurate data.`
Insert cell
md`## Choropleth Map`
Insert cell
chart = {
const svg = d3.create("svg").attr("viewBox", [0, 0, 975, 610]);

svg
.append("g")
.attr("transform", "translate(610,20)")
.append(() => legend({ color, title: data.title, width: 260 }));

svg
.append("g")
.selectAll("path")
.data(topojson.feature(us, us.objects.counties).features)
.join("path")
.attr("fill", d => color(data.get(d.id)))
.attr("d", path)
.append("title")
.text(
d => `${d.properties.name}, ${states.get(d.id.slice(0, 2)).name}
${format(data.get(d.id))}`
);

return svg.node();
}
Insert cell
format = d => `${d}`
Insert cell
md`The Choropleth Map can display the trend and separated scales by colors effectively, but when it comes to large data scales, it might not deliver accurate information effectively.`
Insert cell
Insert cell
md`The usage of format is confusing and I'm not sure about its rules.`
Insert cell
Insert cell
Insert cell
us = FileAttachment("counties-albers-10m.json").json()
Insert cell
topojson = require("topojson-client@3")
Insert cell
d3 = require("d3@5")
Insert cell
path = d3.geoPath()
Insert cell
states = new Map(us.objects.states.geometries.map(d => [d.id, d.properties]))
Insert cell
import { legend } from "@d3/color-legend"
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more