nodeGraph={
const div = html`<div style='max-width: 100%; overflow-x: auto; padding: 0px; margin: 0px;'></div>`;
const margin = ({top: 100, right: 100, bottom: 100, left: 0});
const width = 1200
const height = 1200
const dataset = graphData
dataset.nodes.forEach(node => {
node.connections = 0;
});
dataset.links.forEach(link => {
const sourceNode = dataset.nodes.find(node => node.id === link.source.id)
if (sourceNode) {
sourceNode.connections += 1
}
const targetNode = dataset.nodes.find(node => {
return node.id === link.target.id
})
console.log(targetNode)
if (targetNode) {
targetNode.connections += 1
}
})
let scaleNodeSize = d3.scaleSqrt()
.domain([1, d3.max(dataset.nodes, d => d.connections)])
.range([30, 60]);
//create a simulation for an array of nodes, and compose the desired forces.
const simulation = d3.forceSimulation()
// .force("link", d3.forceLink().id(d => d.id).distance(100).strength(0)) // Defina a força de link como zero
// .force("charge", d3.forceManyBody().strength(0)) // Defina a força de carga como zero
// .force("center", d3.forceCenter(width / 2, height / 2))
.force("link", d3.forceLink() // This force provides links between nodes
.id(d => d.id)
.distance(100)
// .strength(1)
)
.force("charge", d3.forceManyBody().strength(-50)) // This adds repulsion (if it's negative) between nodes.
.force("center", d3.forceCenter(width / 2, height / 2)) // This force attracts nodes to the center of the svg area
.force("collision", d3.forceCollide().radius(80)) // Defina o raio de colisão adequado
// .force("collision", d3.forceCollide().radius(d => scaleNodeSize(d.connections) + 20)) // Use a escala do tamanho do nó
// simulation.force("link").strength(10); // Ajuste o valor de linkStrength conforme necessário
const svg = d3.select(div)
.append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform", `translate(${margin.left},${margin.top})`);
// Initialize the links
const link = svg.append("g")
.attr("class", "links")
.attr("d", function(d) {
console.log({d})
if(!d?.target) {
return;
}
const dx = d.target.x - d.source.x,
dy = d.target.y - d.source.y,
dr = Math.sqrt(dx * dx + dy * dy);
return `M${d.source.x},${d.source.y}A${dr},${dr} 0 0,1 ${d.target.x},${d.target.y}`;
})
.selectAll("line")
.data(dataset.links)
.enter()
.append("line");
// Initialize the nodes
const node = svg.append("g")
.attr("class", "nodes")
.selectAll("circle")
.data(dataset.nodes)
.enter()
.append("circle")
.attr("r", d => {
const connections = d.connections
const size = scaleNodeSize(connections)
return size
})
.attr("class", (d) => d.type)
.call(d3.drag() //sets the event listener for the specified typenames and returns the drag behavior.
.on("start", (event, d) => {
if (!event.active) simulation.alphaTarget(0.3).restart();
d.fx = d.x;
d.fy = d.y;
})
// .on("drag", (event, d) => {
// d.fx = event.x;
// d.fy = event.y;
// })
.on("end", (event, d) => {
if (!event.active) simulation.alphaTarget(0);
d.fx = null;
d.fy = null;
})
// .on("start", dragstarted) //after a new pointer becomes active (on mousedown or touchstart).
.on("drag", dragged) //after an active pointer moves (on mousemove or touchmove).
// .on("end", dragended) //after an active pointer becomes inactive (on mouseup, touchend or touchcancel).
);
// const drag = d3.drag()
// .on("start", (event, d) => {
// if (!d3.event.active) simulation.alphaTarget(0.3).restart(); // Reinicie a simulação
// d.fx = d.x; // Fixe a posição do nó na posição atual
// d.fy = d.y;
// })
// .on("drag", (event, d) => {
// d.fx = event.x; // Atualize a posição fixa do nó para seguir o cursor do mouse
// d.fy = event.y;
// })
// .on("end", (event, d) => {
// if (!d3.event.active) simulation.alphaTarget(0); // Pare a simulação
// d.fx = null; // Libere a posição fixa do nó
// d.fy = null;
// });
// // Aplique a função de arrastar aos nós
// node.call(drag);
// Variável de controle para ativar ou desativar as forças
// let forcesActive = false;
// Adicione os nós e arestas ao gráfico de grafo
// // Adicione um event listener para alternar entre ativar e desativar as forças
// d3.select(div).on("keydown", () => {
// if (d3.event.key === "a") {
// // Ative as forças
// simulation.force("link").strength(0.1); // Ajuste o valor da força de link conforme necessário
// simulation.force("charge").strength(-50); // Ajuste o valor da força de carga conforme necessário
// forcesActive = true;
// } else if (d3.event.key === "d") {
// // Desative as forças
// simulation.force("link").strength(0); // Desligue a força de link
// simulation.force("charge").strength(0); // Desligue a força de carga
// forcesActive = false;
// }
// });
// Desabilite as forças de simulação quando um nó é clicado
// node.on("start", (event, d) => {
// simulation.alphaTarget(0.1).restart(); // Diminua a taxa de aquecimento da simulação
// d.fx = d.x; // Fixe a posição do nó na posição atual
// d.fy = d.y;
// });
// // Atualize a posição do nó quando o mouse é movido
// node.on("drag", (event, d) => {
// d.fx = devent.x; // Atualize a posição fixa do nó para seguir o cursor do mouse
// d.fy = event.y;
// });
// // Reabilite as forças de simulação quando o mouse é solto
// node.on("end", (event, d) => {
// simulation.alphaTarget(0); // Restaure a taxa de aquecimento da simulação
// d.fx = null; // Libere a posição fixa do nó
// d.fy = null;
// });
// Text to nodes
const text = svg.append("g")
.attr("class", "nodes-text")
.attr("paint-order", "stroke")
.selectAll("text")
.data(dataset.nodes)
.enter()
.append("text")
.text(d => {
const name = d.id.match(/^(.*)\@/)
const text = name ? name[1] : d.id
const cased = text.charAt(0).toUpperCase() + text.slice(1)
return cased//.substring(0, 20)
})
.attr("text-anchor", "middle")
//Listen for tick events to render the nodes as they update in your Canvas or SVG.
simulation.nodes(dataset.nodes)//sets the simulation’s nodes to the specified array of objects, initializing their positions and velocities, and then re-initializes any bound forces;
.on("tick", ticked);//use simulation.on to listen for tick events as the simulation runs.
// After this, Each node must be an object. The following properties are assigned by the simulation:
// index - the node’s zero-based index into nodes
// x - the node’s current x-position
// y - the node’s current y-position
// vx - the node’s current x-velocity
// vy - the node’s current y-velocity
simulation.force("link").links(dataset.links);//sets the array of links associated with this force, recomputes the distance and strength parameters for each link, and returns this force.
// After this, Each link is an object with the following properties:
// source - the link’s source node;
// target - the link’s target node;
// index - the zero-based index into links, assigned by this method
// simulation.alpha(0);
// This function is run at each iteration of the force algorithm, updating the nodes position
// (the nodes data array is directly manipulated).
function ticked() {
link.attr("x1", d => d.source.x)
.attr("y1", d => d.source.y)
.attr("x2", d => d.target.x)
.attr("y2", d => d.target.y);
node.attr("cx", d => d.x)
.attr("cy", d => d.y);
text.attr("x", d => d.x) //position of the lower left point of the text
.attr("y", d => d.y); //position of the lower left point of the text
}
//When the drag gesture starts, the targeted node is fixed to the pointer
//The simulation is temporarily “heated” during interaction by setting the target alpha to a non-zero value.
function dragstarted(d) {
if (!d3.event.active) simulation.alphaTarget(0.3).restart();//sets the current target alpha to the specified number in the range [0,1].
d.fy = d.y; //fx - the node’s fixed x-position. Original is null.
d.fx = d.x; //fy - the node’s fixed y-position. Original is null.
}
//When the drag gesture starts, the targeted node is fixed to the pointer
function dragged(d) {
d.fx = d3.event.x;
d.fy = d3.event.y;
}
//the targeted node is released when the gesture ends
function dragended(d) {
if (!d3.event.active) simulation.alphaTarget(0);
d.fx = null;
d.fy = null;
}
return div
}