Public
Edited
Sep 13, 2024
4 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
viewof outdoorTime = Inputs.radio(["Less", "More"], {label: "Time spent outdoors", value: "More"})
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
heatwaveDaysExtended = heatwaveDays.concat(nonExtremeDays)
Insert cell
Insert cell
getActivityPattern = (age, outdoorWorker, numberOfHours) => {

const outdoor = [ 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]

const othersBeforeBlackout = getRandomHoursOutside(numberOfHours)
const othersAfterBlackout = getRandomHoursOutside(1)

return {
before : outdoorWorker ? outdoor : othersBeforeBlackout,
after : outdoorWorker ? (Math.random() <= 0.25 ? outdoor : othersAfterBlackout) : othersAfterBlackout
}
}
Insert cell
indoorBlackout = {
const arr = (await FileAttachment('amir_all.csv').csv({typed : true}))
.map((row, i) => {
const startDate = new Date(Date.UTC(2011, 7, 1, 1, 0, 0, 0))
const date = new Date(startDate.getTime() + i*60*60*1000)
return {
...row, date
}
})

const out = {}
arr.forEach(row => {
out[String(row.date.getTime())] = row
})
return out
}
Insert cell
indoorNoBlackout = {
const arr = (await FileAttachment('amir_no_outage.csv').csv({typed : true}))
.map((row, i) => {
const startDate = new Date(Date.UTC(2011, 7, 1, 1, 0, 0, 0))
const date = new Date(startDate.getTime() + i*60*60*1000)
return {
...row, date
}
})

const out = {}
arr.forEach(row => {
out[String(row.date.getTime())] = row
})
return out
}
Insert cell
Insert cell
indoorSeries = {
return {
'2' : indoorData2,
'5' : indoorData5
}
}
Insert cell
Insert cell
getIndoor = ((day, hour, buildingType, backOnlineAfter) => {

const indoorData = indoorSeries[backOnlineAfter]
if(day === 0 && hour === 0) {
return indoorData.find(row => row.day === day && row.hour === 1)[buildingType]
}
return indoorData.find(row => row.day === day && row.hour === hour)[buildingType]
})
Insert cell
indoorData2 = (await FileAttachment("indoor_amir - 2_days (1).csv").csv())
.map((row, i) => {

const d = new Date(row.time.replace('2024', '2011'))
const startDay = new Date('2011-08-07T00:00Z')
const day = d.getUTCDay() - startDay.getUTCDay()

const out = {};
['new-bad', 'new-good', 'old-bad', 'old-good', 'outdoors'].forEach( k => {
out[k] = Number(row[k])
})
return {
...out, day, hour : d.getUTCHours()
}
})
Insert cell
indoorData5 = (await FileAttachment("indoor_amir - 5_days (1)@1.csv").csv())
.map((row, i) => {

const d = new Date(row.time.replace('2024', '2011'))
const startDay = new Date('2011-08-07T00:00Z')
const day = d.getUTCDay() - startDay.getUTCDay()

const out = {};
['new-bad', 'new-good', 'old-bad', 'old-good', 'outdoors'].forEach( k => {
out[k] = Number(row[k])
})
return {
...out, day, hour : d.getUTCHours()
}
})
Insert cell
Insert cell
reduceArray = (array, segmentSize, sum) => {
let reducedArray = [];
for (let i = 0; i < array.length; i += segmentSize) {
let segment = array.slice(i, i + segmentSize);
let mean = ss.mean(segment);
if(sum) {
reducedArray.push(ss.sum(segment))
}
else {
reducedArray.push(mean)
}
}
return reducedArray;
};
Insert cell
extendedHours = [ ...heatwave, ...nonExtremeHours ]
Insert cell
nonExtremeHours = airport.filter(row => {

const startDate = new Date('2011-01-01T00:00Z')
const endDate = new Date('2011-01-01T00:00Z')
startDate.setUTCDate(startDate.getUTCDate() + nonexDay - 1)
endDate.setUTCDate(endDate.getUTCDate() + nonexDay + 20 - 1)

return row.time >= startDate && row.time <= endDate
}).map( row => {
return { ...row, hour : row.time.getUTCHours() }
})
Insert cell
Insert cell
Insert cell
Insert cell
heatwave = airport.filter(row => {
return row.time >= new Date('2011-08-07T00:00:00Z') && row.time <= new Date('2011-08-11T23:59:00Z')
}).map( row => {
return { ...row, hour : row.time.getUTCHours() }
})
Insert cell
heatwaveDays = reduceArray(heatwave.map(row => row.ta), 24).map((v, i) => {
return { tavg : v }
})
Insert cell
Insert cell
Insert cell
Insert cell
getLinearModel = data => {
const {m, b} = ss.linearRegression(data)
return y => {
return (y-b)/m
}
}
Insert cell
Insert cell
Insert cell
Insert cell
numberWithCommas = x => {
return x.toString().replace(/\B(?=(\d{3})+(?!\d))/g, ",")
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
_(airportDailyRolling).find(row => row.date === '09/08/2011')
Insert cell
ap2011.filter((row, i, arr) => {

const row2 = arr[i + 6]
if(!row2) { return }
return row.smoothed >= 31.5 && row2.smoothed < 30
})
Insert cell
ap2011 = airportDailyRolling.filter(row => row.date.endsWith('2011'))
Insert cell
airportDailyRolling = {
const smoothed = rollingAverage(airportDaily.map(row => row.tavg), 5)
return airportDaily.map((row, i) => {
return { ...row, smoothed : smoothed[i] }
})
}
Insert cell
Type JavaScript, then Shift-Enter. Ctrl-space for more options. Arrow ↑/↓ to switch modes.

Insert cell
airportDaily = _(airport)
.filter(row => {
const d = new Date(row.time)
return d.getUTCMonth() >= 5 && d.getUTCMonth() <= 8 && d.getYear() <= 2023
})
.groupBy(row => {
return (new Date(row.time)).toLocaleDateString('en-GB', {
day: '2-digit',
month: '2-digit',
year: 'numeric'
})
})
.mapValues((arr, dateStr) => {
return {
date : dateStr,
tavg : ss.mean(arr.map(row => row.ta))
}
})
.values()
.valueOf()
Insert cell
erCurveExp(32)
Insert cell
modelInput = {
const data = (await FileAttachment('hstn.usa8506.csv').csv({typed : true}))
const modelInput = data.filter(row => row.tmean >= 29.6)
return modelInput
}
Insert cell
erCurveExp = {
const data = (await FileAttachment('hstn.usa8506.csv').csv({typed : true}))
const modelInput = data.filter(row => row.tmean >= 29.6)
const model = ss.linearRegressionLine(ss.linearRegression(modelInput.map(row => [row.tmean, row.logRR])))
return t => {
return Math.max(1, Math.E**(model(t)))
}
}
Insert cell
Insert cell
Insert cell
Insert cell
test = (await FileAttachment('hstn.usa8506.csv').csv({typed : true})).reverse()
Insert cell
erCurveExp(40)
Insert cell
out = {
return (await FileAttachment('amir_all.csv').csv({typed : true}))
.map((row, i) => {
const startDate = new Date(Date.UTC(2011, 7, 1, 1, 0, 0, 0))

const dateStr = row.date.trim().split(/\s+/g)[1]
const date = new Date(startDate.getTime() + i*60*60*1000)
return {
..._.pick(row, ['outdoor', 'ac100-5day-old-bad', 'ac100-5day-new-good']), date, dateStr
}
}).slice(100, 330)
}
Insert cell
median = round(ss.quantile(rangeOfResults.map(row => row.totalDeaths), 0.5))
Insert cell
q75 = ss.quantile(rangeOfResults.map(row => row.totalDeaths), 0.75)
Insert cell
q25 = ss.quantile(rangeOfResults.map(row => row.totalDeaths), 0.25)
Insert cell
Insert cell
heatwaveDays.map(row => {
return (erCurveExp(row.tavg) - 1)*dailyDeathsPer100k/100000*totalPop
}).reduce(sum, 0)
Insert cell
dailyDeathsPer100k/100000*totalPop*5
Insert cell
airport.filter(row => row.time >= new Date('2024-07-08'))
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more