Public
Edited
Oct 20, 2023
Insert cell
Insert cell
Insert cell
commits = hfParseProcessingFile("processing-commits-flat.csv.zip")
Insert cell
commits
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
commits
SELECT * FROM "commits"
WHERE "commit.committer.date" > ${"2002-08-02T15:29"}
AND "commit.committer.date" < ${"2005-04-19T09:55"}
Insert cell
Plot.plot({
marks: [
Plot.barY(alphaCommits, Plot.groupX({y: "count"}, {x: "commit.author.name", y: "y", tip: true, sort: {x: "y", reverse: true}})),
Plot.ruleY([0])
]
})
Insert cell
topContributors = {
let result = 0;
result = d3.rollup(alphaCommits, (D) => D.length, (d) => d['commit.author.name'])
result = Array.from(result).sort((a, b) => b[1] - a[1]).map(d => d[0])
return result;
}
Insert cell
Plot.plot({
width: 1200,
x: {
grid: true
},
y: {
grid: true,
label: null,
tickSize: 0,
domain: topContributors
},
marginLeft: 100,
marks: [
//Plot.ruleX(oneReleases, { x: "published_at", tip: true, title: d => `REV ${d.revision}:${(new Date(d.published_at).toLocaleDateString())} \n\n ${d.body} `, opacity: 0.3}),
//Plot.ruleX([new Date("2002-08-02T15:29")], {stroke: "black", strokeWidth: 2}),
//Plot.tip([`Launch of processing alpha forum`], {x: new Date("2002-08-02T15:29")}),
Plot.dot(alphaCommits, {x: d => new Date(d["commit.committer.date"]), y: "commit.author.name", title: d => `${d['commit.author.name']} ${(new Date(d['commit.committer.date']).toLocaleDateString())} \n\n${d['commit.message']}`, tip: true, strokeWidth: 0.5})
]
})
Insert cell
Insert cell
releases = hfParseProcessingFile("releases-data.csv")
Insert cell
releases
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
oneReleases
X
published_at
Y
Color
Size
Facet X
Facet Y
Mark
rule
Type Chart, then Shift-Enter. Ctrl-space for more options.

Insert cell
Insert cell
Insert cell
import {hfParseProcessingFile} from "@tiborudvari/hf-utils"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more