Public
Edited
Apr 23, 2023
Insert cell
Insert cell
Insert cell
Insert cell
chart = {
const svg = d3.create("svg")
.attr("viewBox", [0, 0, width, height]);

svg.append(legend)
.attr("transform", "translate(70,250)");
//place of the legend

svg.append("g")
.selectAll("path")
.data(topojson.feature(polygons, polygons.objects.GeoJSON).features)
.join("path")
.attr("fill", d => color(data.get(d.properties[idAttribute])))
.attr("d", path)
.append("title")
.text(d => `${d.properties[idAttribute]}, ${format(data.get(d.properties[idAttribute]))}`);
//the chunk of code above is what I'm referencing with the hover over.

return svg.node();
}
Insert cell
Insert cell
// http://www.joshuastevens.net/cartography/make-a-bivariate-choropleth-map/
schemes = [
{
name: "RdBu",
colors: [
"#e8e8e8", "#e4acac", "#c85a5a",
"#b0d5df", "#ad9ea5", "#985356",
"#64acbe", "#627f8c", "#574249"
]
},
{
name: "BuPu",
colors: [
"#e8e8e8", "#ace4e4", "#5ac8c8",
"#dfb0d6", "#a5add3", "#5698b9",
"#be64ac", "#8c62aa", "#3b4994"
]
},
{
name: "GnBu",
colors: [
"#e8e8e8", "#b5c0da", "#6c83b5",
"#b8d6be", "#90b2b3", "#567994",
"#73ae80", "#5a9178", "#2a5a5b"
]
},
{
name: "PuOr",
colors: [
"#e8e8e8", "#e4d9ac", "#c8b35a",
"#cbb8d7", "#c8ada0", "#af8e53",
"#9972af", "#976b82", "#804d36"
]
}
]
Insert cell
labels = ["low", "", "high"]
Insert cell
n = Math.floor(Math.sqrt(colors.length))
Insert cell
x = d3.scaleQuantile(Array.from(data.values(), d => d[0]), d3.range(n))
Insert cell
y = d3.scaleQuantile(Array.from(data.values(), d => d[1]), d3.range(n))
Insert cell
path = d3.geoPath().projection(projection)
//assign the projection to a path
Insert cell
//Rotate the map sets the longitude of origin for our UTM projection.
projection = d3.geoTransverseMercator().rotate([87,0]).fitExtent([[10, 10], [width, height]], polygon_features);
//import topojson, define the projection
Insert cell
polygon_features = topojson.feature(polygons, polygons.objects.GeoJSON)
Insert cell
data = Object.assign(new Map(d3.csvParse(await FileAttachment("CSVcsv.csv").text(), ({GEOID, AWATER, ALAND}) => [GEOID, [+AWATER, +ALAND]])), {title: ["Total Water Per Area", "Total Land Per Area"]})
Insert cell
idAttribute = "GEOID"
//chooses with id to target from the csv file
Insert cell
polygons = FileAttachment("GeoJSON.json").json()
//polygon features
Insert cell
height = 610
Insert cell
width = 875
//canvas width and height
Insert cell
legend = () => {
const k = 24;
const arrow = DOM.uid();
return svg`<g font-family=sans-serif font-size=10>
<g transform="translate(-${k * n / 2},-${k * n / 2}) rotate(-45 ${k * n / 2},${k * n / 2})">
<marker id="${arrow.id}" markerHeight=10 markerWidth=10 refX=6 refY=3 orient=auto>
<path d="M0,0L9,3L0,6Z" />
</marker>
${d3.cross(d3.range(n), d3.range(n)).map(([i, j]) => svg`<rect width=${k} height=${k} x=${i * k} y=${(n - 1 - j) * k} fill=${colors[j * n + i]}>
<title>${data.title[0]}${labels[j] && ` (${labels[j]})`}
${data.title[1]}${labels[i] && ` (${labels[i]})`}</title>
</rect>`)}
<line marker-end="${arrow}" x1=0 x2=${n * k} y1=${n * k} y2=${n * k} stroke=black stroke-width=1.5 />
<line marker-end="${arrow}" y2=0 y1=${n * k} stroke=black stroke-width=1.5 />
<text font-weight="bold" dy="0.71em" transform="rotate(90) translate(${n / 2 * k},6)" text-anchor="middle">${data.title[0]}</text>
<text font-weight="bold" dy="0.71em" transform="translate(${n / 2 * k},${n * k + 6})" text-anchor="middle">${data.title[1]}</text>
</g>
</g>`;
}
//creates the customized legend
Insert cell
Insert cell
color = {
return value => {
if (!value) return "#ccc";
let [a, b] = value;
return colors[y(b) + x(a) * n];
};
}

Insert cell
Insert cell
formatNum = d3.format(".1f")
Insert cell
format = (value) => {
if (!value) return "N/A";
let [a, b] = value;
return `${a} ${data.title[0]}${labels[x(a)] && ` (${labels[x(a)]})`}
${formatNum(b)} ${data.title[1]}${labels[y(b)] && ` (${labels[y(b)]})`}`;
}
//formats for the labels
Insert cell
topojson = require("topojson-client@3")
Insert cell
d3 = require("d3@5")
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more