Public
Edited
Jan 8, 2023
Insert cell
Insert cell
Insert cell
Insert cell
// Most common base stat totals
sortedCounts = _.sortBy(_.groupBy(statPokedex, baseStatTotal), count => -count.length)
Insert cell
Insert cell
// mons that lose or keep same stats when evolving
pokedexList.filter(mon => mon.prevo && baseStatTotal(getPrevo(mon)) >= baseStatTotal(mon))
Insert cell
// list of evos by ordered by total stat increases
_.sortBy(
pokedexList.filter((mon) => mon.prevo),
(mon) => baseStatTotal(mon) - baseStatTotal(getPrevo(mon))
).map((mon) => mon.name)
Insert cell
// evos that lose stats upon evolving
["hp", "atk", "def", "spa", "spd", "spe"].map((stat) =>
pokedexList.filter(
(mon) => mon.prevo && getPrevo(mon).baseStats[stat] > mon.baseStats[stat]
).map(mon => mon.name)
)
Insert cell
// evos that keep stats same upon evolving
["hp", "atk", "def", "spa", "spd", "spe"].map((stat) =>
pokedexList.filter(
(mon) => mon.prevo && getPrevo(mon).baseStats[stat] === mon.baseStats[stat]
).map(mon => mon.name)
)
Insert cell
// evos ranked by stat gain per stat
statNames.map(stat => {
return _.sortBy(pokedexList.filter(mon => mon.prevo), mon => -(mon.baseStats[stat] - getPrevo(mon).baseStats[stat])).map(mon => mon.name)
})
Insert cell
Insert cell
// evos that have an even stat gain across all stats
equalStatGains = statPokedex.filter(mon => {
if (!mon.prevo) return false
const diff = statDiff(mon, getPokemon(mon.prevo))
return _.uniq(Object.values(diff)).length === 1
}).map(mon => mon.name)
Insert cell
Insert cell
viewof tieCutoff = Inputs.range([1, 6], { value: 2, step: 1, label: "Cutoff for tied stats"})
Insert cell
Insert cell
Insert cell
typeStatsCount = {
const combos = [];
for (const type of types) {
for (const stat of statNames) {
const bestCount = statPokedex.filter((mon) => {
return mon.types.includes(type) && bestStats(mon).includes(stat);
}).length;
const worstCount = statPokedex.filter((mon) => {
return mon.types.includes(type) && worstStats(mon).includes(stat);
}).length;
combos.push({
type,
stat,
bestCount,
worstCount
});
}
}
return combos
}
Insert cell
function bestStats(pokemon) {
const maxStat = Math.max(...Object.values(pokemon.baseStats))
const bestStats = statNames.filter(stat => pokemon.baseStats[stat] === maxStat)
// Don't count mons with even stats
return bestStats.length > tieCutoff ? [] : bestStats
}
Insert cell
function worstStats(pokemon) {
const minStat = Math.min(...Object.values(pokemon.baseStats))
const worstStats = statNames.filter(stat => pokemon.baseStats[stat] === minStat)
// Don't count mons with even stats
return worstStats.length > tieCutoff ? [] : worstStats
}
Insert cell
statNames = ['hp', 'atk', 'def', 'spa', 'spd', 'spe']
Insert cell
statPokedex = pokedexList.filter(mon => {
if (mon.baseSpecies) {
return !_.isEqual(mon.baseStats, getPokemon(mon.baseSpecies).baseStats)
}
return true
}
)
Insert cell
function statDiff(mon1, mon2) {
return _.mapValues(mon1.baseStats, (value, stat) => value - mon2.baseStats[stat])
}
Insert cell
import { pokedexList, getPokemon, getPrevo, pokemonWithEvolutionChain, types, baseStatTotal } from "@tesseralis/pokemon-dataviz"
Insert cell
import { vl } from "@vega/vega-lite-api-v5"
Insert cell
Type JavaScript, then Shift-Enter. Ctrl-space for more options. Arrow ↑/↓ to switch modes.

Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more