periodic = {
let h = 2;
let ry = h / 3;
let rx = ry * ellipseAspect;
let f = Math.sqrt(rx * rx - ry * ry);
let pts = [Vec(-f, 0), Vec(+f, 0), Vec(0, (-2 * h) / 6)];
let ang = (sweepAxis * Math.PI) / 180;
pts = pts.map((p) => p.rotate(ang));
let tp = three_periodic(...pts);
let samples;
if (sampling == "natural") samples = naturalSample(tp.outer, nSamples);
else if (sampling == "arc length")
samples = arclenSample(tp.outer, nSamples + 1);
else samples = jacobiSample(tp.outer, nSamples);
let { vtx, touch } = tp.triangle(samples[0]);
let centers = { 0: [], 1: [], 2: [], 3: [], 4: [], 11: [], 59: [] };
const computeCenters = function (vtx) {
for (let i of Object.keys(centers)) {
centers[i] = i == 0 ? Vec(0, 0) : X(+i, ...vtx);
}
};
computeCenters(vtx);
const displace = (vtx, touch) => {
for (let i = 0; i < 3; i++) {
let { x, y } = vtx[(i + 1) % 3].sub(vtx[(i + 5) % 3]);
let n = Vec(-y, x).normalize();
touch[i] = touch[i].add(n.scale(0.05));
}
};
displace(vtx, touch);
const linearRing = (pts, iSample) =>
pts.map(({ x, y }) => [x, y, (iSample / nSamples) * length]);
const R = length / 2 / Math.PI;
const torusRing = (pts, iSample) => {
const theta = (iSample / nSamples) * Math.PI * 2;
const [sin, cos] = [Math.sin(theta), Math.cos(theta)];
return pts.map(({ x, y }) => [cos * (x + R), y, sin * (x + R)]);
};
const ring = sweep == "circular" ? torusRing : linearRing;
let positions = [...ring(vtx, 0)];
let lpositions = [...linearRing(vtx, 0)];
let touchCurves = [...ring(touch, 0)];
computeCenters(vtx);
let centerCurves = {};
[...Object.keys(centers)].map((i) => {
centerCurves[i] = [ring([centers[i]], 0)[0]];
});
let faces = [];
let faceAngles = [];
let tangentAngles = [];
let meanCurvs = [];
let gaussianCurvs = [];
const vec3Sub = (a, b) => a.map((x, i) => x - b[i]);
const vec3Norm = (v) => {
const len = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
return [v[0] / len, v[1] / len, v[2] / len];
};
const vec3Dot = (u, v) => u[0] * v[0] + u[1] * v[1] + u[2] * v[2];
const faceAngle = (a, b, c, d) =>
(Math.acos(
vec3Dot(
vec3Norm(vec3Sub(lpositions[a], lpositions[b])),
vec3Norm(vec3Sub(lpositions[c], lpositions[d]))
)
) /
Math.PI) *
180;
const tangentAngle = (a, b, c, d) => {
let u = Vec(...lpositions[a])
.sub(Vec(...lpositions[c]))
.normalize();
let v = Vec(...lpositions[b])
.sub(Vec(...lpositions[d]))
.normalize();
return (Math.acos(u.dot(v)) / Math.PI) * 180;
};
for (let i = 1; i <= nSamples; i++) {
let { vtx, touch } = tp.triangle(samples[i % nSamples]);
displace(vtx, touch);
positions.push(...ring(vtx, i));
lpositions.push(...linearRing(vtx, i));
touchCurves.push(...ring(touch, i));
computeCenters(vtx);
Object.keys(centers).forEach((icenter) => {
centerCurves[icenter].push(ring([centers[icenter]], i)[0]);
});
for (let j of [0, 1, 2]) {
let a = i * 3 + j,
b = a - 3,
c = i * 3 + ((j + 1) % 3),
d = c - 3;
faces.push([b, a, c, d]);
faceAngles.push(faceAngle(a, b, c, d));
tangentAngles.push(tangentAngle(a, b, c, d));
}
}
return {
samples,
tp,
positions,
faces,
touchCurves,
centerCurves,
faceAngles,
tangentAngles
};
}