Published
Edited
May 30, 2022
1 fork
21 stars
Also listed in…
Paper implementations
Insert cell
Insert cell
portfolio = {
for (;;) {
for (let promise of imagePromises) {
await visibility();
yield await promise;
await Promises.delay(10000);
}
}
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
mutable resetFileInput = null
Insert cell
{
const img = html`<img />`;
img.src = await Files.url(customImg);
mutable image = img;
mutable resetFileInput = mutable resetFileInput + 1;
return `Image ${mutable resetFileInput} Loaded`;
}
Insert cell
Insert cell
//
// Obtain an ImageData object from image
//
imgdata = imageData(image)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
//
// Average color and color error for a given imagedata within a given rectangle
//
function getStat(imgdata, x0, y0, w, h) {
const {data, width, height} = imgdata;
const getPixel = (x, y) => {
const offset = (y * width + x) * 4;
return data.slice(offset, offset + 3);
};
let sum = [0, 0, 0];
for (let x = x0; x < x0 + w; ++x) {
for (let y = y0; y < y0 + h; ++y) {
const pix = getPixel(x, y);
sum[0] += pix[0];
sum[1] += pix[1];
sum[2] += pix[2];
}
}
const npix = w * h;
const avg = sum.map((comp) => comp / npix);
let maxErr = 0;
for (let x = x0; x < x0 + w; ++x) {
for (let y = y0; y < y0 + h; ++y) {
const pix = getPixel(x, y);
maxErr = Math.max(
maxErr,
(pix[0] - avg[0]) ** 2 + (pix[1] - avg[1]) ** 2 + (pix[2] - avg[2]) ** 2
);
}
}
return { avg, maxErr };
}
Insert cell
//
// Returns an array of quadrants from building a quadtree on imagedata 'data', such
// that no quadrant has size smaller than minSz and all quadrants have less than the maximum color
// error 'epsilon'.
//
function quadrants(imgdata, epsilon, minSz, maxSz=1024) {
const { data, width, height } = imgdata;
const quads = [];
const visit = (x0, y0, w, h) => {
let { avg, maxErr } = getStat(imgdata, x0, y0, w, h);
if ((Math.max(w, h) <= minSz || maxErr < epsilon) && Math.max(w, h) <= maxSz) {
quads.push({
x0,
y0,
w,
h,
center: [x0 + w / 2, y0 + h / 2],
avg,
maxErr
});
} else {
if (w >= h) {
let sz = 1 << ~~Math.log2(w);
if (sz == w) sz /= 2;
let [l, r, wl, wr] = [x0, x0 + sz, sz, w - sz];
if (h > sz) {
visit(l, y0, wl, sz);
visit(r, y0, wr, sz);
visit(l, y0 + sz, wl, h - sz);
visit(r, y0 + sz, wr, h - sz);
} else {
visit(l, y0, wl, h);
visit(r, y0, wr, h);
}
} else {
let sz = 1 << ~~Math.log2(h);
if (sz == h) sz /= 2;
let [t, b, ht, hb] = [y0, y0 + sz, sz, h - sz];
if (w > sz) {
visit(x0, t, sz, ht);
visit(x0, b, sz, hb);
visit(x0 + sz, t, w - sz, ht);
visit(x0 + sz, b, w - sz, hb);
} else {
visit(x0, t, w, ht);
visit(x0, b, w, hb);
}
}
}
};
visit(0, 0, width, height);
return quads;
}
Insert cell
quads = quadrants(imgdata, sqrtEpsilon ** 2, 1 << logMinSz, 1 << logMaxSz)
Insert cell
Insert cell
{
const del = d3.Delaunay.from(quads.map((q) => q.center));
const { width, height } = imgdata;
const vor = del.voronoi([0, 0, width, height]);
const ctx = DOM.context2d(width, height, 1);
ctx.strokeStyle = "black";
vor.render(ctx);
vor.renderBounds(ctx);
ctx.stroke();
return ctx.canvas;
}
Insert cell
Insert cell
{
const { width, height } = imgdata;
const ctx = DOM.context2d(width, height, 1);
const n = width * height;
const imgdata2 = new ImageData(width, height);
const data = imgdata2.data;
for (let i = 0; i < n; i++) {
const offset = i * 4;
const val = Math.round(luminance[i] * 255);
data[offset] = data[offset + 1] = data[offset + 2] = val;
data[offset + 3] = 255;
}
ctx.putImageData(imgdata2, 0, 0);
return ctx.canvas;
}
Insert cell
luminance = {
const { width, height, data } = imgdata;
const n = width * height;
const lumArray = new Float64Array(n);
for (let i = 0; i < n; i++) {
const offset = i * 4;
lumArray[i] =
(data[offset] * 0.2126 +
data[offset + 1] * 0.7152 +
data[offset + 2] * 0.0722) /
255;
}
return lumArray;
}
Insert cell
Insert cell
{
const { width, height } = imgdata;
const ctx = DOM.context2d(width, height, 1);
const n = width * height;
const imgdata2 = new ImageData(width, height);
const data = imgdata2.data;
for (let i = 0; i < n; i++) {
const offset = i * 4;
const val = Math.round((1 - lumGradient[i]) * 255);
data[offset] = data[offset + 1] = data[offset + 2] = val;
data[offset + 3] = 255;
}
ctx.putImageData(imgdata2, 0, 0);
return ctx.canvas;
}
Insert cell
lumGradient = {
const { width, height } = imgdata;
const n = width * height;
const lumGrad = new Float64Array(n);
const getLum = (x, y) => luminance[y * width + x];
for (let x = 0; x < width; x++) {
let left = Math.max(0, x - 1);
let right = Math.min(width - 1, x + 1);
for (let y = 0; y < height; y++) {
let up = Math.max(0, y - 1);
let down = Math.min(height - 1, y + 1);
lumGrad[y * width + x] = Math.sqrt(
(getLum(right, y) - getLum(left, y)) ** 2 +
(getLum(x, up) - getLum(x, down)) ** 2
);
}
}
return lumGrad;
}
Insert cell
Insert cell
Insert cell
viewof centroidal = {
const { width, height, data } = imgdata;
const n = quads.length;
const points = new Float64Array(n * 2);
quads.forEach(({ center }, i) => {
points[i * 2] = center[0];
points[i * 2 + 1] = center[1];
});
const del = new d3.Delaunay(points);
const vor = del.voronoi([0, 0, width, height]);
const c = new Float64Array(n * 2);
const s = new Float64Array(n);
const getDensity = (x, y) => lumGradient[y * width + x];
const getCentroids = () => {
// Compute the weighted centroid for each Voronoi cell.
c.fill(0);
s.fill(0);
for (let y = 0, i = 0; y < height; ++y) {
for (let x = 0; x < width; ++x) {
const w = getDensity(x, y);
i = del.find(x + 0.5, y + 0.5, i);
s[i] += w;
c[i * 2] += w * (x + 0.5);
c[i * 2 + 1] += w * (y + 0.5);
}
}
for (let i = 0; i < n; ++i) {
const x0 = points[i * 2],
y0 = points[i * 2 + 1];
const x1 = s[i] ? c[i * 2] / s[i] : x0,
y1 = s[i] ? c[i * 2 + 1] / s[i] : y0;
points[i * 2] = x1;
points[i * 2 + 1] = y1;
}
};
const jitter = () => {
for (let i = 0; i < n; ++i) {
// This is necessary to get around a bug in voronoi when centers are aligned in a grid
const x = points[i * 2],
y = points[i * 2 + 1];
points[i * 2] = x + Math.random() * 0.5 - 0.25;
points[i * 2 + 1] = y + Math.random() * 0.5 - 0.25;
}
};
let ctx = DOM.context2d(width, height, 1);
ctx.canvas.value = null;
ctx.strokeStyle = "black";
for (let i = 0; i < lloydIterations; i++) {
getCentroids();
if (i == lloydIterations - 1) jitter();
vor.update();
ctx.clearRect(0, 0, width, height);
ctx.beginPath();
vor.render(ctx);
vor.renderBounds(ctx);
ctx.stroke();
for (let i = 0; i < n; i++) {
ctx.beginPath();
ctx.arc(points[i * 2], points[i * 2 + 1], 1, 0, Math.PI * 2);
ctx.fill();
}
yield ctx.canvas;
}
ctx.canvas.value = vor;
ctx.canvas.dispatchEvent(new CustomEvent("input"));
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
imagePromises = [
FileAttachment("flower2.png").image(),
FileAttachment("butterfly1.png").image(),
FileAttachment("cat1.png").image(),
FileAttachment("flower1.png").image(),
FileAttachment("fruit1.png").image(),
FileAttachment("hanger.png").image(),
FileAttachment("neon.png").image(),
FileAttachment("origami1.png").image(),
FileAttachment("painting1.png").image(),
FileAttachment("portrait1.png").image()
]
Insert cell
Insert cell
import {
image as randomImg,
imageData,
viewof imageConfig
} from "@esperanc/voronoi-mosaics"
Insert cell
import { file } from "@jashkenas/inputs"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more