Published
Edited
May 30, 2022
4 stars
Also listed in…
Generative Art
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
//
// Returns one of the 52 doodles in https://github.com/googlecreativelab/quickdraw-dataset/raw/master/preview.jpg
//
getDoodle = {
let d = await FileAttachment("doodlepreview.jpg").image();
let ctx = DOM.context2d(d.width, d.height, 1);
ctx.drawImage(d, 0, 0);
let src = ctx.getImageData(0, 0, d.width, d.height);
const [rows, cols] = [4, 13];
return function (imgIndex) {
let ctx = DOM.context2d(128, 128, 1);
let dst = ctx.createImageData(128, 128);
imgIndex = imgIndex % (rows * cols);
let row = Math.trunc(imgIndex / cols);
let col = imgIndex % cols;
for (let y = 0; y < 128; y++) {
let srcOffset = ((y + row * 128) * d.width + col * 128) * 4;
let dstOffset = y * 128 * 4;
for (let x = 0; x < 128; x++) {
let white = (dst.data[dstOffset++] = src.data[srcOffset++]);
dst.data[dstOffset++] = src.data[srcOffset++];
dst.data[dstOffset++] = src.data[srcOffset++];
dst.data[dstOffset++] = (white < 200) * src.data[srcOffset++];
}
}
ctx.putImageData(dst, 0, 0);
return ctx.canvas;
};
}
Insert cell
getDoodle(~~(Math.random()*52))
Insert cell
//
// A Diagram is a drawing comprising points and vectors. This is
// used to implement coordinate frames that can be adjusted with the mouse
//
class Diagram {
constructor() {
this.points = [];
this.rays = [];
}
clone() {
let d = new Diagram();
for (let p of this.points) d.addPoint(p.clone());
for (let { ipoint, v } of this.rays) d.addRay(ipoint, v.clone());
return d;
}
transform(m) {
const d = new Diagram();
for (let p of this.points) d.addPoint(m.applyPoint(p));
for (let { ipoint, v } of this.rays) d.addRay(ipoint, m.applyVector(v));
return d;
}
addPoint(p) {
const n = this.points.length;
this.points.push(p);
return n;
}
addRay(ipoint, v) {
const n = this.rays.length;
this.rays.push({ ipoint, v });
return n;
}
mouseDown(event) {
this.selectedRay = null;
this.selectedPoint = null;
let mouse = Vec(event.offsetX, event.offsetY);
this.mouse = mouse;
for (let ray of this.rays) {
let { ipoint, v } = ray;
const p = this.points[ipoint];
const q = p.add(v);
if (q.dist(mouse) < 8) {
this.selectedRay = ray;
return true;
}
}
for (let p of this.points) {
if (p.dist(mouse) < 8) {
this.selectedPoint = p;
return true;
}
}
return false;
}
mouseMove(event) {
let ray = this.selectedRay;
let mouse = Vec(event.offsetX, event.offsetY);
let u = mouse.sub(this.mouse);
this.mouse = mouse;
if (ray) {
ray.v = ray.v.add(u);
return true;
} else {
let point = this.selectedPoint;
if (point) {
point.set(point.add(u));
return true;
}
}
return false;
}
mouseUp(event) {
this.selectedRay = null;
this.selectedPoint = null;
}
draw(ctx, options = {}) {
const {
pointSize = 8,
arrowSize = 10,
alternateArrowTypes = true
} = options;
let even = false;
for (let { ipoint, v } of this.rays) {
even = !even;
const p = this.points[ipoint];
const q = p.add(v);
ctx.beginPath();
if (even || !alternateArrowTypes)
ctx.arc(q.x, q.y, pointSize / 2, 0, Math.PI * 2);
ctx.moveTo(p.x, p.y);
ctx.lineTo(q.x, q.y);
if (!even || !alternateArrowTypes) {
const u = v.normalize();
const u1 = u.rotate(Math.PI * 0.9).scale(arrowSize);
ctx.lineTo(...q.add(u1).array());
const u2 = u.rotate(-Math.PI * 0.9).scale(arrowSize);
ctx.moveTo(q.x, q.y);
ctx.lineTo(...q.add(u2).array());
}
ctx.stroke();
}
for (let p of this.points) {
ctx.beginPath();
for (let [dx, dy] of [
[-1, 1],
[1, 1],
[1, -1],
[-1, -1]
]) {
ctx.lineTo(p.x + (dx * pointSize) / 2, p.y + (dy * pointSize) / 2);
}
ctx.closePath();
ctx.stroke();
}
}
}
Insert cell
//
// Builds a diagram with one point and two vectors
//
function makeDiagramFromFrame(p, u, v) {
const d = new Diagram();
const o = d.addPoint(p);
d.addRay(0, u);
d.addRay(0, v);
return d;
}
Insert cell
//
// Builds a diagram from a Matrix
//
function makeDiagramFromMatrix(M) {
return makeDiagramFromFrame(Vec(M.e, M.f), Vec(M.a, M.b), Vec(M.c, M.d));
}
Insert cell
//
// Builds a Matrix from a frame diagram
//
function makeMatrixFromDiagram(d) {
return makeMatrix(d.points[0], d.rays[0].v, d.rays[1].v);
}
Insert cell
function makeFrame(x0, y0, sz) {
return makeDiagramFromFrame(Vec(x0, y0), Vec(sz, 0), Vec(0, sz));
}
Insert cell
//
// Returns a Matrix where the columns are u, v and p respectively
//
function makeMatrix (p, u, v) {
return new Matrix(u.x, u.y, v.x, v.y, p.x, p.y);
}
Insert cell
//
// Returns a Matrix that transforms point p0, vectors u0 and v0 into
// point p1, vectors u1 and v1
//
function makeTransform(p0, u0, v0, p1, u1, v1) {
let A = makeMatrix(p0, u0, v0);
let B = makeMatrix(p1, u1, v1);
return B.mult(A.inverse());
}
Insert cell
//
// Assuming src and dst are diagrams with one point for the origin and two vectors
// for the two axes, returns a transformation thant maps src into dst
//
function makeTransformFromDiagrams(src, dst) {
return makeTransform(
src.points[0],
src.rays[0].v,
src.rays[1].v,
dst.points[0],
dst.rays[0].v,
dst.rays[1].v
);
}
Insert cell
//
// A n matrix that effects a translation by vector v
//
function makeTranslation(v) {
return Matrix.translate(v.x, v.y);
}
Insert cell
//
// A rotation matrix around a point
//
function makeRotation(p, degrees) {
const ang = (degrees / 180) * Math.PI;
return Matrix.translate(p.x, p.y)
.mult(Matrix.rotate(ang))
.mult(Matrix.translate(-p.x, -p.y));
}
Insert cell
//
// A reflection matrix with p as a fixed point and mapping
// vector axis to -axis
//
function makeReflection(p, axis) {
let axis2 = Vec(-axis.y, axis.x);
return makeTransform(p, axis, axis2, p, axis.scale(-1), axis2);
}
Insert cell
//
// A glide reflection matrix, i.e, a composition of a reflection about an axis
// and a translation
function makeGlide(p, q, axis) {
let axis2 = Vec(-axis.y, axis.x);
return makeTransform(p, axis, axis2, q, axis, axis2.scale(-1));
}
Insert cell
//
// A hash map of points
//
class PointMap extends Map {
constructor(...args) {
super(...args);
}
static hash(point) {
return Math.round(point.x * 1000) + "," + Math.round(point.y * 1000);
}
has(point) {
return super.has(PointMap.hash(point));
}
set(point, value) {
return super.set(PointMap.hash(point), value);
}
get(point) {
return super.get(PointMap.hash(point));
}
}
Insert cell
//mutable debug = []
Insert cell
//
// Creates a collection of frame diagrams starting from the master
// diagram and 'flood filling' the plane with copies transformed by
// transforms. The process is repeated iteration times at most, but
// frames lying outside the rectangle [xmin, ymin, xmax, ymax] are discarded
//
function makeTiling(master, transforms, iterations, xmin, ymin, xmax, ymax) {
let canonical = makeFrame(0, 0, 1);
let instancing = makeTransformFromDiagrams(canonical, master);
let grid = new PointMap();
let tiles = [master];
const add = (batch) => {
let nextBatch = [];
for (let t0 of batch) {
for (let t1 of transforms) {
let t = t1.mult(t0);
let d = makeDiagramFromMatrix(t).transform(instancing);
let p = d.points[0]
.add(d.points[0].add(d.rays[0].v))
.add(d.points[0].add(d.rays[1].v))
.scale(1 / 3);
if (!grid.has(p)) {
if (p.x >= xmin && p.x <= xmax && p.y >= ymin && p.y <= ymax) {
tiles.push(d);
nextBatch.push(t);
grid.set(p, d);
}
}
}
}
return nextBatch;
};
let batch = [new Matrix()];
for (let i = 0; i < iterations && batch.length > 0; i++) {
batch = add(batch);
}
return tiles;
}
Insert cell
//
// Wallpaper group transformation sets
//
wg = ({
p1: [
makeTranslation(Vec(1, 0)),
makeTranslation(Vec(0, 1)),
makeTranslation(Vec(-1, 0)),
makeTranslation(Vec(0, -1))
],
p2: [
makeRotation(Vec(0.5, 0), 180),
makeRotation(Vec(0.5, 1), 180),
makeRotation(Vec(0, 0.5), 180),
makeRotation(Vec(1, 0.5), 180)
],
pm: [
makeTranslation(Vec(0, 1)),
makeTranslation(Vec(0, -1)),
makeReflection(Vec(0, 0), Vec(1, 0)),
makeReflection(Vec(1, 0), Vec(1, 0))
],
pg: [
makeTranslation(Vec(0, 1)),
makeTranslation(Vec(0, -1)),
makeGlide(Vec(0, 0.5), Vec(1, 0.5), Vec(1, 0)),
makeGlide(Vec(0, 0.5), Vec(-1, 0.5), Vec(1, 0))
],
cm: [
makeReflection(Vec(0, 0), Vec(0, 1)),
makeReflection(Vec(0, 1), Vec(0, 1)),
makeGlide(Vec(0, 0.5), Vec(1, 0.5), Vec(1, 0)),
makeGlide(Vec(0, 0.5), Vec(-1, 0.5), Vec(1, 0))
],
pmm: [
makeRotation(Vec(0, 0), 180),
makeRotation(Vec(1, 0), 180),
makeRotation(Vec(0, 1), 180),
makeRotation(Vec(1, 1), 180),
makeReflection(Vec(0, 0), Vec(0, 1)),
makeReflection(Vec(0, 0), Vec(1, 0)),
makeReflection(Vec(0, 1), Vec(0, 1)),
makeReflection(Vec(1, 0), Vec(1, 0))
],
pmg: [
makeRotation(Vec(0, 0.5), 180),
makeRotation(Vec(1, 0.5), 180),
makeReflection(Vec(0, 0), Vec(0, 1)),
makeReflection(Vec(0, 1), Vec(0, 1))
],
pgg: [
makeRotation(Vec(1.5, 0.5), 180),
makeRotation(Vec(-0.5, 0.5), 180),
makeRotation(Vec(0.5, 1.5), 180),
makeRotation(Vec(0.5, -0.5), 180),
makeGlide(Vec(0, 0), Vec(1, 0), Vec(1, 0)),
makeGlide(Vec(0, 1), Vec(1, 1), Vec(1, 0)),
makeGlide(Vec(0, 0), Vec(0, 1), Vec(0, 1)),
makeGlide(Vec(1, 0), Vec(1, 1), Vec(0, 1))
],
cmm: [
makeRotation(Vec(0, 0), 180),
makeRotation(Vec(0.5, 0.5), 180),
makeReflection(Vec(0, 0), Vec(1, 0)),
makeReflection(Vec(0, 0), Vec(0, 1))
],
p4: [
makeRotation(Vec(0, 0), 90),
makeRotation(Vec(1, 1), 90),
makeRotation(Vec(1, 0), 180),
makeRotation(Vec(0, 1), 180)
],
p4m: [
makeRotation(Vec(0, 1), 90),
makeRotation(Vec(1, 0), 90),
makeReflection(Vec(0.5, 0.5), Vec(1, 1))
],
p4g: [makeReflection(Vec(0.5, 0.5), Vec(1, 1)), makeRotation(Vec(0, 0), 90)],
p3: [
makeRotation(Vec(0.5, Math.sqrt(3) / 6), 120),
makeRotation(Vec(0, 0), 120)
],
p3m1: [
makeRotation(Vec(0.5, Math.sqrt(3) / 6), 120),
makeRotation(Vec(0, 0), 120),
makeReflection(Vec(0.5, 0), Vec(1, 0))
],
p31m: [
makeRotation(Vec(0.5, Math.sqrt(3) / 6), 120),
makeRotation(Vec(0, 0), 120),
makeReflection(Vec(0.5, 0), Vec(0, 1))
],
p6: [
makeRotation(Vec(0.5, Math.sqrt(3) / 6), 120),
makeRotation(Vec(0, 0), 60)
],
p6m: [
makeRotation(Vec(0.5, Math.sqrt(3) / 6), 120),
makeRotation(Vec(0, 0), 60),
makeReflection(Vec(0.5, 0), Vec(1, 0)),
makeReflection(Vec(0.5, 0), Vec(0, 1))
]
})
Insert cell
Insert cell
import { Vec, Matrix } from "@esperanc/2d-geometry-utils"
Insert cell
import { miniDraw } from "@esperanc/mini-draw"
Insert cell
import { HideInput } from "@esperanc/range-input-variations"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more