Public
Edited
Jan 3, 2023
Importers
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
data = (await (await fetch('https://data.cityofnewyork.us/resource/f7dc-2q9f.json?$limit=9999')).json())
.map(d => ({
...d,
sample_date: d3.utcParse('%Y-%m-%dT%H:%M:%S.%L')(d.sample_date),
test_date: d3.utcParse('%Y-%m-%dT%H:%M:%S.%L')(d.test_date),
copies_l: +d.copies_l,
copies_l_x_average_flowrate: +d.copies_l_x_average_flowrate,
population_served: +d.population_served,
// Standardize data to use abbreviations in map data
wrrf_abbreviation: (d => {
if (d.wrrf_abbreviation === 'JA') return 'JAM'
if (d.wrrf_abbreviation === 'RK') return 'ROC'
return d.wrrf_abbreviation
})(d)
}))
.sort((a, b) => a.sample_date - b.sample_date)
Insert cell
movingAverage = (i, arr, key, n = 7) => d3.mean(arr.slice(i - n + 1, i + 1), d => d[key])
Insert cell
chartWidth = Math.max(width, 600)
Insert cell
wrrfAbbrs = new Set(data.map(d => d.wrrf_abbreviation))
Insert cell
// Programatically generate a color scheme by choosing hues around a rainbow and making colors progressively darker, then light again every 3rd color
colors = new Array(wrrfAbbrs.size).fill().map((_, i, arr) => (
d3.color(
d3.interpolateRainbow(i / arr.length)
).darker(i % 3).formatRgb()
))
Insert cell
Insert cell
Insert cell
Insert cell
sewershedsTopology = FileAttachment("sewersheds.topo").json()
Insert cell
features = ({
shoreline: topojson.feature(sewershedsTopology, sewershedsTopology.objects.shoreline.geometries[0]),
sewersheds: topojson.feature(sewershedsTopology, sewershedsTopology.objects.sewersheds),
plants: topojson.feature(sewershedsTopology, sewershedsTopology.objects.plants),
})
Insert cell
colorScale = d3.scaleOrdinal()
.range(colors.concat(['#CCC', '#CCC']))
.domain(Array.from(wrrfAbbrs).concat(['UNKNOWN', 'NA']))
Insert cell
map = (initialValue = []) => {
const mapWidth = 400
const mapHeight = mapWidth
const mapNode = htl.html`<svg viewBox="0 0 ${mapWidth} ${mapHeight}" />`
const map = d3.select(mapNode)
map.attr('style', `max-width: ${mapWidth}px; width: 100%`)
const deselectedOpacity = 0.25

// Projections

// NAD83 / New York Long Island (EPSG:32118)
// https://github.com/veltman/d3-stateplane#nad83--new-york-long-island-epsg32118
// Added our own fitExtent to center on our map data
const projection = d3.geoIdentity()
.fitExtent([[20, 20], [mapWidth - 20, mapWidth - 20]], features.sewersheds)
const path = d3.geoPath(projection)
// Water
map.append('rect')
.attr('x', 0.5)
.attr('y', 0.5)
.attr('width', mapWidth - 1)
.attr('height', mapWidth - 1)
.attr('fill', '#F5F5F5')
.attr('stroke', '#CCC')
.attr('pointer-events', 'none')
// New York
const newYork = map.append('path')
.attr('d', path(features.shoreline))
.attr('fill', '#CCC')
.attr('stroke', '#FFF')
.attr('pointer-events', 'none')

// State container
const selectedCities = initialValue

const sewershedShapes = map.append('g')
.selectAll()
.data(features.sewersheds.features)
.join('path')
.attr('class', 'plant-sewershed')
.attr('data-plant', d => d.properties.Sewershed)
.attr('d', path)
.attr('fill', d => colorScale(d.properties.Sewershed))
.attr('opacity', d => initialValue.includes(d.properties.Sewershed) ? 1 : deselectedOpacity)
.attr('stroke', '#FFF')
.attr('data-selected', d => initialValue.includes(d.properties.Sewershed))
.on('mouseover', function (e, d) {
map.select(`.plant-name[data-plant="${d.properties.Sewershed}"]`).attr('opacity', 1)
})
.on('mouseout', function (e, d) {
map.select(`.plant-name[data-plant="${d.properties.Sewershed}"]`).attr('opacity', 0)
})
.on('click', function (e, d) {{
const sel = d3.select(this)
const sewershed = d.properties.Sewershed
if (sewershed === 'UNKNOWN') return
if (view.value.includes(sewershed)) { // if already selected, remove from value array
const valueIdx = view.value.findIndex(v => sewershed === v)
view.value.splice(valueIdx, 1)
updateSelection(view.value)
} else { // if not already selected, add to value array
updateSelection(view.value.concat([sewershed]))
}
}})

const plantPoints = map.append('g')
.selectAll()
.data(features.plants.features.filter(d => d.properties.wpcp))
.join(g => {
g.append('circle')
.attr('class', 'plant-dot')
.attr('data-plant', d => d.properties.wpcp)
.attr('cx', d => projection(d.geometry.coordinates)[0])
.attr('cy', d => projection(d.geometry.coordinates)[1])
.attr('r', 5)
.attr('stroke', '#FFF')
.attr('fill', d => colorScale(d.properties.wpcp))
.attr('pointer-events', 'none')

g.append('text')
.attr('class', 'plant-name')
.attr('data-plant', d => d.properties.wpcp)
.attr('x', d => projection(d.geometry.coordinates)[0])
.attr('y', d => projection(d.geometry.coordinates)[1])
.attr('dx', 8)
.attr('dy', 4)
.attr('font-family', 'var(--sans-serif), sans-serif')
.attr('font-size', 11)
.attr('fill', '#000')
.attr('stroke', '#FFF')
.attr('stroke-width', 3)
.attr('paint-order', 'stroke')
.attr('text-anchor', 'start')
.attr('opacity', 0)
.attr('pointer-events', 'none')
.text(d => d.properties.item_id)
})

const updateSelection = (arr) => {
view.value = arr
view.dispatchEvent(new Event('input', { bubbles: true }))
sewershedShapes
.attr('opacity', d => arr.includes(d.properties.Sewershed) ? 1 : deselectedOpacity)
.attr('data-selected', d => arr.includes(d.properties.Sewershed))
}
const selectAll = htl.html`<button>All</button>`
const selectNone = htl.html`<button>None</button>`

selectAll.addEventListener('click', () => updateSelection(Array.from(wrrfAbbrs)))
selectNone.addEventListener('click', () => updateSelection([]))
const view = htl.html`
<div>
<div style=${{ position: 'relative' }}>
${map.node()}
<div style=${{
position: 'absolute',
top: '10px',
left: '10px',
fontSize: '12px',
fontFamily: 'var(--sans-serif), sans-serif',
verticalAlign: 'middle',
}}>
Select: ${selectAll} ${selectNone}
</div>
</div>
</div>
`
view.value = selectedCities

return view
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more