Published
Edited
Aug 17, 2021
Insert cell
Insert cell
md`## 1 Maternal Mortality Rate (1/100,000) in China from 2010 to 2018
### 1.1 An Overview: Urban-Rural Gap`
Insert cell
{
const urban_rural1 = vl.markArea({opacity: 0.5})
.data(mortality_data_china)
.encode(
vl.x().fieldT("Year").timeUnit("year").title("2010-2018"),
vl.y().mean("Maternal").stack(null).title("Maternal Mortality Rate"),
vl.color().fieldN("Urban-Rural").scale({scheme: "goldorange"}),
)

const urban_rural2 = vl.markLine({strokeWidth: 3, interpolate: 'monotone'})
.data(mortality_data_china)
.encode(
vl.x().fieldT("Year").timeUnit("year"),
vl.y().fieldQ('Maternal'),
vl.color().fieldN('Urban-Rural').legend(null),
vl.tooltip().fieldN('Urban-Rural')
)
.width(700)
.height(500)

return vl.layer(urban_rural1, urban_rural2).render();
}
Insert cell
Insert cell
Insert cell
Insert cell
vl.markCircle()
.data(mortality_data_provincial)
.transform(vl.filter("datum.Year == '" + selectYear + "'"))
.encode(vl.x().fieldQ("City").title("Urban Maternal Mortality Rate"),
vl.y().fieldQ("County").title("Rural Maternal Mortality Rate"),
vl.color().fieldN("Total").scale({scheme: "lightgreyred"}).title("Total Maternal Mortality Rate"),
vl.size().fieldN("Total"),
vl.tooltip().fieldN("Provincial"))
.width(700)
.height(500)
.render()
Insert cell
md`### 1.3 Urban-Rural Gap at Provincial Level`
Insert cell
Insert cell
vl.markBar()
.data(mortality_data_province)
.transform(vl.filter("datum.Location == '" + selectLocation + "'"))
.encode(vl.y().fieldN("Urban_Rural"),
vl.x().fieldO("Year"),
vl.color().mean(vl.repeat("column")).scale({scheme: "lightgreyred"}).title("Maternal Mortality Rate"),
vl.tooltip().mean(vl.repeat("column")))
.width(400)
.height(120)
.repeat({column: ["Mortality"]})
.resolve({scale: {color: 'independent'}})

.render()

Insert cell
Insert cell
{
const totalrate = vl.markBar()
.data(maternal_data_china)
.encode(vl.y().fieldQ("Value").title("Mortality Rate"),
vl.x().fieldN("Year"),
vl.color().fieldN("Causes").scale({scheme: "inferno"}).title("Major Causes"),
vl.tooltip().fieldQ("Value"))
.width(360)
.height(360)
return vl.layer(totalrate)
.facet({column: vl.field("Location")})
.data(maternal_data_china)
.render()
}
Insert cell
Insert cell
vl.markBar()
.data(mortality_data_2019)
.width(580)
.height(400)
.encode(
vl.y().fieldN("Causes").title("Major Causes in urban/rural area"),
vl.x().fieldQ("Value").title("% of Total Maternal Mortality"),
vl.color().fieldQ("Value").scale({scheme: "lightorange"}).title("% of Total Maternal Mortality"),
vl.tooltip().fieldQ("Value"))
.render()
Insert cell
Insert cell
viewof illness = DOM.select(["Obstetrical Bleeding", "Gestational Hypertension", "Medical Complications", "Amniotic Fluid_Embolism"])
Insert cell
choropleth = {
const svg = d3.create("svg")
.attr("viewBox", [0, 0, width, height]);

svg.append("g")
.attr("transform", "translate(360,20)")
.append(() =>
legend({
color: color3,
title: data.title,
width: 260,
tickFormat: ".1f"
})
);


svg.append("g")
.selectAll("path")
.data(China_p.features)
.join("path")
.attr("stroke", "black")
.attr("stroke-linejoin", "round")
.attr("stroke-width", "1")
.attr("fill", d => color3(data.get(d.properties.ID_number.toString())))
.attr("d", path)
.append("title")
.text(d => d.properties.ID + ": " + data.get(d.properties.ID_number.toString())) ;

return svg.node();
}
Insert cell
d3 = require("d3@5")
Insert cell
topojson = require("topojson-client@3")
Insert cell
json = FileAttachment("China_adm-1@1.json").json()
Insert cell
China_p = topojson.feature(json, json.objects.China_adm)
Insert cell
test = China_p.features[3].properties.ID_number
Insert cell

csv_data = {
switch (illness){
case 'Obstetrical Bleeding':
default:
return d3.csvParse(await FileAttachment("China_province.csv").text(),({id, Obstetrical_Bleeding}) => [id, Obstetrical_Bleeding])
case 'Gestational Hypertension':
return d3.csvParse(await FileAttachment("China_province.csv").text(),({id, Gestational_Hypertension}) => [id, Gestational_Hypertension])
case 'Medical Complications':
return d3.csvParse(await FileAttachment("China_province.csv").text(),({id, Medical_Complications}) => [id, Medical_Complications])
case 'Amniotic Fluid_Embolism':
return d3.csvParse(await FileAttachment("China_province.csv").text(),({id, Amniotic_Fluid_Embolism}) => [id, Amniotic_Fluid_Embolism])
}
}
Insert cell
data = {
switch (illness){
case 'Obstetrical Bleeding':
default:
return Object.assign(new Map(csv_data), {title: "Obstetrical_Bleeding in China, 2010"})
case 'Gestational Hypertension':
return Object.assign(new Map(csv_data), {title: "Gestational Hypertension in China, 2010"})
case 'Medical Complications':
return Object.assign(new Map(csv_data), {title: "Medical Complications in China, 2010"})
case 'Amniotic Fluid_Embolism':
return Object.assign(new Map(csv_data), {title: "Amniotic Fluid_Embolism in China, 2010"})
}
}
Insert cell
population_d = Array.from(csv_data.values(),d => d[1])
Insert cell
//Create a classification method (I use natural breaks since there are so many extreme values in data and it isn't influenced by extreme values and group up the extreme values together)
simple = require("simple-statistics@7.0.7/dist/simple-statistics.min.js")
Insert cell
//import Kmeans threshold
naturalbreaks = simple.ckmeans(population_d, 6).map(v => v.pop())
Insert cell
YlGnBu = [d3.color("#fef0d9"), d3.color("#fdd49e"), d3.color("#fdbb84 "),d3.color("#fc8d59"),d3.color("#e34a33"),d3.color("#b30000")]
Insert cell
color = d3.scaleThreshold()
.domain(naturalbreaks)
.range(YlGnBu)
Insert cell
color2 = d3.scaleQuantize()
.domain(d3.extent(population_d)) // pass only the extreme values to a scaleQuantize’s domain
.range(YlGnBu)
Insert cell
color3 =d3.scaleQuantile()
.domain(population_d) // pass the whole dataset to a scaleQuantile’s domain
.range(YlGnBu);
Insert cell
width = 975
Insert cell
height = 710
Insert cell
margin = 100;
Insert cell
//Rotate the map sets the longitude of origin for our Albers projection.
projection = d3.geoTransverseMercator().rotate([-110,0]).fitExtent([[65, 80], [width, height]], China_p);
Insert cell
//Using a path generator to project geometry onto the map
path = d3.geoPath().projection(projection);
Insert cell
color4 = d3.scaleQuantile()
.domain(population_d)
.range(d3.quantize(d3.interpolateHcl("#60c96e", "#4d4193"), 6))
Insert cell
import {legend} from "@d3/color-legend"
Insert cell
md`## mortality_file_china`
Insert cell
import {vl} from '@vega/vega-lite-api'
Insert cell
mortality_file_china = FileAttachment("mortality_china2@2.csv")
Insert cell
mortality_text_china = mortality_file_china.text()
Insert cell
mortality_data_china = d3.csvParse(mortality_text_china, d3.autoType)
Insert cell
import {printTable} from '@uwdata/data-utilities'
Insert cell
printTable(mortality_data_china.slice(0, 10))
Insert cell
md`## mortality_file_provincial`
Insert cell
mortality_file_provincial = FileAttachment("mortality_pro.csv")
Insert cell
mortality_text_provincial = mortality_file_provincial.text()
Insert cell
mortality_data_provincial = d3.csvParse(mortality_text_provincial, d3.autoType)
Insert cell
printTable(mortality_data_provincial.slice(0, 10))
Insert cell
md`## mortality_file_province`
Insert cell
mortality_file_province = FileAttachment("mortality_province2.csv")
Insert cell
mortality_text_province = mortality_file_province.text()
Insert cell
mortality_data_province = d3.csvParse(mortality_text_province, d3.autoType)
Insert cell
printTable(mortality_data_province.slice(0, 10))
Insert cell
md`## maternal_file_china`
Insert cell
maternal_file_china = FileAttachment("maternal_total2@2.csv")
Insert cell
maternal_text_china = maternal_file_china.text()
Insert cell
maternal_data_china = d3.csvParse(maternal_text_china, d3.autoType)
Insert cell
printTable(maternal_data_china.slice(0, 10))
Insert cell
Insert cell
mortality_file_2019 = FileAttachment("mortality_2019a@1.csv")
Insert cell
mortality_text_2019 = mortality_file_2019.text()
Insert cell
mortality_data_2019 = d3.csvParse(mortality_text_2019, d3.autoType)
Insert cell
printTable(mortality_data_2019.slice(0, 10))
Insert cell
Insert cell
maternal_file_2019 = FileAttachment("maternal_2019c.csv")
Insert cell
maternal_text_2019 = maternal_file_2019.text()
Insert cell
maternal_data_2019 = d3.csvParse(maternal_text_2019, d3.autoType)
Insert cell
printTable(maternal_data_2019.slice(0, 10))
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more