Public
Edited
May 8, 2023
34 stars
A Julia set on the Riemann sphereThe Z-CurveBarnsley's fernA stochastic digraph IFS algorithmSelf-affine tilesThe TwindragonThe Eisenstein fractionsA self-affine tile with holesSelf-affine tiles via polygon mergeGolden rectangle fractalsBifurcation diagram with critical curvesThe tame twindragonIllustrations for the proof of Green's theoremNon-orientability of a Mobius stripExamples of parametric surfacesPenrose tilingThe extended unit circlePenrose three coloringNewtons's method on the Riemann sphereConic sectionsDivisor graphsThe dance of Earth and VenusIterating multiples of the sine functionBorderline fractalsSelf-similar intersectionsBox-counting dimension examplesMandelbrot by dimensionInverse iteration for quadratic Julia setsInteger Apollonian PackingsIllustrations of two-dimensonal heat flowThe logistic bifurcation locusThe eleven unfoldings of the cubeA unimodal function with fractal level curvesGreen's theorem and polygonal areaThe geometry and numerics of first order ODEsThe xxx^xxx-spindleAnimated beatsRauzy FractalsHilbert's coordinate functionsPluckNot PiDrum strikeThe Koch snowflakeFractalized squareA Taylor series about π/4\pi/4π/4PlotX3D HyperboloidA PlotX3D animationModular arithmetic in 5th grade artSimple S-I-R ModelThe Poisson KernelPoly-gasketsClassification of 2D linear systems via trace and determinantJulia sets and the Mandelbrot set
Water waves
Fourier SeriesDisks for a solid of revolutionOrbit detection for the Mandelbrot setTracing a path on a spherePlot for mathematiciansFunctions of two variablesPartial derivativesDijkstra's algorithm on an RGGGradient ascentUnfolding polyhedraTangent plane to a level surfaceA strange discontinuityExamples of level surfacesMcMullen carpetsHills and valleysThe definition of ⇒Double and iterated integralsMST in an RGGTrees are bipartiteFractal typesettingd3.hierarchy and d3.treeK23 is PlanarPolar CoordinatesParametric region generatorParametric Plot 2DContour plotsGreedy graph coloringGraph6A few hundred interesting graphsThe Kings ProblemFirst order, autonomous systems of ODEsRunge-Kutta for systems of ODEs
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
div = html`<div id="demo_container" class="demo_container">
<div class="slider_container">
<input class="slider" type="range" id="A" name="A"
min="0" max="1" step="0.01">
<span class="slider_label">
<span class="slider_tex">${tex`A=`}</span>
<span id='A_value'></span>
</span>
</div>
<div class="slider_container">
<input class="slider" type="range" id="alpha" name="alpha"
min="0" max="1" step="0.01">
<span class="slider_label">
<span class="slider_tex">${tex`\alpha=`}</span>
<span id='alpha_value'></span>
</span>
</div>
<div class="slider_container">
<input class="slider" type="range" id="beta" name="beta"
min="0" max="5" step="0.01">
<span class="slider_label">
<span class="slider_tex">${tex`\beta=`}</span>
<span id='beta_value'></span>
</span>
</div>
<div class="slider_container">
<label>
<input style="width:30px" type="checkbox" id="toggle_circles">Highlight two circles</input>
</label>
</div>

<div id="water" class="svg_container">
<svg id="water" class="demo" width=${0.96 * width}></svg>
</div>
</div>`
Insert cell
{
let container = d3.select(div);
let svg = container.select("svg");
let xmin = -10;
let xmax = 10;
let dx = 1;
let ymin = -6;
let ymax = 4;
let dy = 1;
let aspect = (ymax - ymin) / (xmax - xmin);

let grid = d3
.range(ymin, dy, dy)
.map((y) => d3.range(xmin - dx, xmax + 2 * dx, dx).map((x) => [x, y]));
grid = grid.reduce(function (accumulated, currentValue) {
return accumulated.concat(currentValue);
}, []);

let A0 = 0.5;
let A = A0;
let alpha0 = 0.5;
let alpha = alpha0;
let beta0 = 3;
let beta = beta0;
let t0 = 0;
let pts = grid.map((xy) => p(A, alpha, beta, xy[0], xy[1], t0));
let outline = pts.slice(pts.length - (xmax - xmin + 3));
outline.push([xmax, ymin]);
outline.push([xmin, ymin]);

let xScale, yScale, rScale, pts_to_path;
function setup() {
svg.selectAll("*").remove();
// let width = 0.8*width;
let height = aspect * width;
svg.attr("height", height);
xScale = d3.scaleLinear().domain([xmin, xmax]).range([0, width]);
rScale = d3
.scaleLinear()
.domain([0, xmax - xmin])
.range([0, width]);
yScale = d3.scaleLinear().domain([ymin, ymax]).range([height, 0]);
pts_to_path = d3
.line()
.x(function (d) {
return xScale(d[0]);
})
.y(function (d) {
return yScale(d[1]);
});

svg
.append("path")
.attr("d", pts_to_path(outline))
.attr("fill", "lightblue")
.attr("stroke", "blue")
.attr("stroke-width", "2px");
let circles = svg
.selectAll("circle")
.data(pts)
.join("circle")
.attr("class", "water")
.attr("cx", function (d) {
return xScale(d[0]);
})
.attr("cy", function (d) {
return yScale(d[1]);
})
.attr("r", 3)
.attr("fill", "black")
.attr("stroke", "black")
.attr("stroke-width", 1);
let to_highlight = circles
.filter(function (d, i) {
let i1 = Math.round(pts.length - (xmax - xmin + 3) / 2);
let i2 = 3 * Math.round(pts.length / 4 - (xmax - xmin + 3) / 2);
return i == i1 || i == i2;
})
.attr("class", "highlight");
}

function start(t) {
pts = grid.map((xy) => p(A, alpha, beta, xy[0], xy[1], t / 1000));
outline = pts.slice(grid.length - (xmax - xmin + 3));
outline.push([xmax, ymin]);
outline.push([xmin, ymin]);
svg
.selectAll("path")
.transition()
.duration(0)
.attr("d", pts_to_path(outline));
svg
.selectAll("circle")
.data(pts)
.transition()
.duration(0)
.attr("cx", function (d) {
return xScale(d[0]);
})
.attr("cy", function (d) {
return yScale(d[1]);
});
}

function p(A, alpha, beta, x0, y0, t) {
let r = A * Math.exp(alpha * y0);
let arg = alpha * x0 - beta * t;
let x = x0 + r * Math.cos(arg);
let y = y0 + r * Math.sin(arg);
return [x, y];
}

setup();
let timer = d3.timer(start);

container
.select("#A")
.property("value", A0)
.on("input", function () {
A = parseFloat(d3.select("#A").property("value"));
container.select("#A_value").text(d3.format("0.2f")(A));
});
container.select("#A_value").text(d3.format("0.2f")(A));
container
.select("#alpha")
.property("value", alpha0)
.on("input", function () {
alpha = parseFloat(d3.select("#alpha").property("value"));
container.select("#alpha_value").text(d3.format("0.2f")(alpha));
});
container.select("#alpha_value").text(d3.format("0.2f")(alpha));
container
.select("#beta")
.property("value", beta0)
.on("mouseup", function () {
beta = parseFloat(d3.select("#beta").property("value"));
container.select("#beta_value").text(d3.format("0.2f")(beta));
});
container.select("#beta_value").text(d3.format("0.2f")(beta));
container
.select("#toggle_circles")
.property("checked", false)
.on("click", function () {
if (d3.select("#toggle_circles").property("checked")) {
d3.selectAll("circle.highlight").attr("r", 6).attr("fill", "yellow");
} else {
d3.selectAll("circle.highlight").attr("r", 3).attr("fill", "black");
}
});
}
Insert cell
html`<style>
div.demo_container {
background-color: #f1f1f1;
}
div.slider_container {
padding: 5px;
}
input.slider {
display: inline !important;
width: 50% !important
}
span.slider_label {
vertical-align: 8px
}

div.svg_container {
width: 96%;
margin: 2%;
}
svg.demo {
background-color: white;
border: solid 1px lightslategray;
}
</style>`
Insert cell
Type JavaScript, then Shift-Enter. Ctrl-space for more options. Arrow ↑/↓ to switch modes.

Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more