Published
Edited
Dec 1, 2020
3 stars
Insert cell
Insert cell
// Keep track of the section so that updates only happen when the section changes
mutable currentSection = 0
Insert cell
chart = {
// Overall container
const container = d3.create("div").attr("class", "scroll-container");

// Container for the narrative section
const narrativeContainer = container
.append("div")
.attr("class", "narrative-container");

// Narrative section (holds the text on the left)
const narrative = narrativeContainer.append("div").attr("class", "narrative");

// Add text
narrative
.selectAll(".section")
.data(descriptions)
.join("div")
.attr("class", "section")
.append("text")
.text(d => d);

// Visualization container
const vis = container.append("div");

const svg = vis
.append("svg")
.attr("height", height)
.attr("width", chartWidth);

// Add the axes
svg.append("g").call(xAxis);
svg.append("g").call(yAxis);

// Update function (just switches the colors)
const update = section => {
// If the section hasn't changed, don't do anything!
if (section === mutable currentSection) return;
mutable currentSection = section;

// Filter down based on month
const min_date = x.domain()[0];
const max_date = new Date(min_date.setMonth(min_date.getMonth() + section));

// fancy transition

const transition = ele =>
ele
.transition()
.duration(1000)
.delay((d, i) => {
// Calculate days betwen this date and the max date
const one_day = 24 * 60 * 60 * 1000; // hours*minutes*seconds*milliseconds
const days_between = (max_date.getTime() - d.x.getTime()) / one_day;
return 50 * (30 - days_between);
})
.attr("r", 3);
const points = svg
.selectAll("circle")
.data(ny_data.filter(d => d.x < max_date))
.join(enter =>
enter
.append("circle")
.attr("r", 0)
.call(transition)
)
.attr("cx", d => x(d.x))
.attr("cy", d => y(d.y));
};

// Add the scrolling listener
narrativeContainer.on("scroll", () => {
// Compute section
const totalHeight = narrativeContainer.node().getBoundingClientRect().top;
const offset = narrative.node().getBoundingClientRect().y;
const section = Math.floor((totalHeight - offset + 10) / sectionHeight);
update(section);
});

return container.node();
}
Insert cell
md`## Scales and Axes`
Insert cell
x = d3
.scaleTime()
.domain(d3.extent(ny_data.map(d => d.x)))
.range([margin.left, chartWidth - margin.right])
Insert cell
y = d3
.scaleLinear()
.domain(d3.extent(ny_data, d => d.y))
.range([height - margin.bottom, margin.top])
Insert cell
xAxis = g =>
g
.attr("transform", `translate(0,${height - margin.bottom})`)
.call(d3.axisBottom(x))
Insert cell
yAxis = g =>
g.attr("transform", `translate(${margin.left},0)`).call(d3.axisLeft(y))
Insert cell
settings = md`## Settings`
Insert cell
// Descriptions for each section
descriptions = [
"COVID in New York",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November"
]
Insert cell
height = 400
Insert cell
sectionHeight = 200
Insert cell
narrativeWidth = 200
Insert cell
margin = ({ left: 100, right: 50, top: 50, bottom: 100 })
Insert cell
chartWidth = width - narrativeWidth - 20
Insert cell
Insert cell
import { formatted_data } from "@mkfreeman/recreating-nyt-u-s-cases-map"
Insert cell
ny_data = formatted_data
.filter(d => d.state_full === "New York")[0]
.data.map(d => ({ x: new Date(d.key), y: d.value }))
Insert cell
import { drawChart, chart_data } from "@info474/d3-small-multiples"
Insert cell
html`<style>

.scroll-container {
width:${width}px;
height:${height}px;
}

.narrative-container {
height:${height}px;
overflow-y:scroll;
float:left;
}

.narrative {
width:${narrativeWidth}px;
}

.vis-container {
height:${height}px;
width:${width - narrativeWidth - 20}px;
float:right;
}

.section {
height: ${sectionHeight}px;
}
.section:last-of-type {
height:${height}px;
}
</style>`
Insert cell
d3 = require("d3")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more