Public
Edited
Jun 17, 2022
1 fork
59 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
points0 = {
let rest = 0;
const phi = Math.PI * (3 - Math.sqrt(5));
return (
d3
// sort the features by what we're plotting, so that missing or excess
// rural population from a commune goes to another rural commune
.sort(geo.features, ({ properties: { code } }) => density.get(code))
.flatMap((f) => {
const coords = projection(d3.geoCentroid(f));
const {
properties: { code }
} = f;
const pop = population.get(code);
const length = Math.round((pop + rest) / precision);
// we keep track of the difference between the current sum and the true sum, and add
// the people we missed (or overcounted) to the next unit, so that the grand total is correct.
rest += pop - length * precision;
return Array.from({ length }, (_, i) => {
const r = 0.1 * Math.sqrt(0.5 + i);
return {
coords: [
coords[0] + r * Math.sin(i * phi),
coords[1] + r * Math.cos(i * phi)
],
code
};
});
})
);
}
Insert cell
Insert cell
points = (replay,
points0
.map((d) => d.coords)
.flat()
.map((d) => d - height / 2 + 0.01 * (Math.random() - 0.5)))
Insert cell
codes = points0.map((d) => d.code)
Insert cell
run = {
for (let i = 0; i < 150; i++) {
yield mapUrban.update(i);
}
}
Insert cell
fill = colorBy === "commune"
? codeColor
: colorBy === "population density"
? (code) => densityColor(density.get(code))
: (code) => ruralColor(density.get(code))
Insert cell
stroke = (c) => (c === code ? "white" : fill(c)) // highlight a commune
Insert cell
densityColor = d3
.scaleSequentialSqrt(d3.interpolateCool)
.domain(d3.extent(density, ([, v]) => v))
Insert cell
ruralColor = d3
.scaleThreshold()
.domain([50, 100, 250])
.range("e6deb2-9ac1ae-ecb45b-e07a5f".split("-").map((d) => `#${d}`))
Insert cell
codeColor = d3
.scaleOrdinal()
.domain(density.keys())
.range(
[].concat(
d3.schemeTableau10,
d3.schemeAccent,
d3.schemeCategory10,
d3.schemeDark2
)
)
Insert cell
discUniformTransportBatched = {
let indices = [],
projection,
deltas;

// batched
return (
points,
radius,
{ dirs = 3, strength = 1, profile = chordAreaInverse } = {}
) => {
const n = points.length / 2;
if (n !== indices.length) {
indices = Uint32Array.from(d3.range(n));
projection = new Float32Array(n);
deltas = new Float32Array(2 * n);
}

const a = 2 * Math.PI * Math.random();
deltas.fill(0);
for (let d = 0; d < dirs; d++) {
const ap = a + (Math.PI * d) / dirs,
sa = Math.sin(ap),
ca = Math.cos(ap);
for (let i = 0; i < n; i++)
projection[i] = ca * points[2 * i] + sa * points[2 * i + 1];

indices.sort((i, j) => projection[i] - projection[j]);

for (let k = 0; k < n; k++) {
const i = indices[k],
ideal = radius * profile(k / (n + 1)),
delta = ideal - projection[i];
deltas[2 * i] += ca * delta;
deltas[2 * i + 1] += sa * delta;
}
}
for (let i = 0; i < points.length; i++)
points[i] += (deltas[i] / dirs) * strength;
};
}
Insert cell
// jrus' fast (and precise) approximation of the chord area inverse function
import { chordAreaInverse2 as chordAreaInverse } from "@fil/chord-area-inverse"
Insert cell
function lloydsRelaxation(voronoi, radius) {
const {
delaunay: { points }
} = voronoi;
for (let i = 0; i < points.length / 2; i++) {
const R = Math.hypot(points[2 * i], points[2 * i + 1]);
if (R < radius) {
const c = voronoi.cellPolygon(i);
const p = d3.polygonCentroid(
c.map(([x, y]) => {
const r0 = Math.hypot(x, y);
const a = radius / Math.max(r0, radius);
return [x * a, y * a];
})
);
const f = 0.5;
points[2 * i] += (p[0] - points[2 * i]) * f;
points[2 * i + 1] += (p[1] - points[2 * i + 1]) * f;
}
}
}
Insert cell
function preserveContinuity(voronoi, codes) {
const {
delaunay: { points }
} = voronoi;

const counts = {};
const colors = codes.map((d) => (counts[d] = (counts[d] || 0) + 1) - 1);

let cutoff = 10;
do {
let changed = false;
for (let i = 0; i < codes.length; i++) {
for (const j of voronoi.delaunay.neighbors(i)) {
if (codes[i] === codes[j] && colors[j] !== colors[i]) {
colors[j] = colors[i] = Math.min(colors[j], colors[i]);
changed = true;
}
}
}
if (!changed) cutoff = 0;
} while (cutoff-- > 0);

for (let i = 0; i < colors.length; i++) {
const f = colors[i];
if (f > 0) {
console.log("fix continuity for point", i, codes[i]);
const base = [];
for (let j = 0; j < i; j++) if (codes[j] === codes[i]) base.push(j);
points[2 * i] +=
0.7 * (d3.mean(base, (i) => points[2 * i]) - points[2 * i]);
points[2 * i + 1] +=
0.7 * (d3.mean(base, (i) => points[2 * i + 1]) - points[2 * i + 1]);
}
}
}
Insert cell
projection = d3.geoMercator().fitSize([height, height], geo)
Insert cell
height = Math.min(670, width)
Insert cell
// source "https://raw.githubusercontent.com/gregoiredavid/france-geojson/master/departements/41-loir-et-cher/communes-41-loir-et-cher.geojson"
geo = FileAttachment("41.json").json()
Insert cell
names = new Map(geo.features.map((f) => [f.properties.code, f.properties.nom]))
Insert cell
density = new Map(
d3.sort(
geo.features.map((f) => [
f.properties.code,
(population.get(f.properties.code) / d3.geoArea(f)) *
((4 * Math.PI) / 510.1e6) // population per km2
]),
([, v]) => v
)
)
Insert cell
population = FileAttachment("population41.csv")
.csv()
.then((d) => new Map(d.map(({ code, population }) => [code, +population])))
Insert cell
Insert cell
rivers = [
{
name: "La Loire",
places: [
"Saint-Laurent-Nouan",
"Montlivault",
"Candé-sur-Beuvron",
"Monteaux"
]
},
{
name: "Le Loir",
places: [
"Saint-Jean-Froidmentel",
"Fréteval",
"Pezou",
"Lisle",
"Vendôme",
"Naveil",
"Mazangé",
"Saint-Rimay",
"Montoire-sur-le-Loir",
"Couture-sur-Loir"
]
},
{
name: "Le Cher",
places: ["Selles-sur-Cher", "Saint-Aignan", "Montrichard Val de Cher"]
}
]
Insert cell
import { Legend, Swatches } from "@d3/color-legend"
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more