Public
Edited
Feb 11, 2024
1 fork
12 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
import { canvas } with { image } from "@fil/polyconic-glsl" // "@fil/satellite-glsl";
Insert cell
sdf = {
const edt = spherical ? sphedt1d : edt1d;

const grid = Float64Array.from(originalGrid.ocean);

for (let x = 0; x < width; x++) {
// transform each column
edt(height)(grid, x, width, 1);
}
for (let y = 0; y < height; y++) {
// transform each row, scaled by latitude
const f = Math.sin(((y + 0.5) / height) * Math.PI) ** 2;
edt(width)(grid, y * width, 1, f);
}

// apply sign
for (let i = 0, n = width * height; i < n; i++)
grid[i] = Math.sqrt(grid[i]) * (originalGrid.sign[i] * 2 - 1);

return grid;
}
Insert cell
// spherical version
sphedt1d = (l) => {
const l3 = l * 3;
const v = new Uint16Array(l3);
const f = new Float64Array(l3);
const z = new Float64Array(l3 + 1);
let i;
return (grid, offset, stride, factor) => {
v[0] = 0;
z[0] = -INF;
z[1] = INF;
for (let q = 0; q < l3; q++) {
if (stride === 1) {
// longitudes: repeat 3 times, consider the middle, scaled by the parallel’s length
i = offset + (q % l);
f[q] = grid[i] / factor;
} else {
// latitudes
// repeat with a rotation of (180, 0, 180)
const q0 = q % l;
const panel = Math.floor(q / l);
if (panel === 1) {
i = offset + q0 * stride;
} else {
i = l - 1 - ((offset + (l >> 1)) % l) + (l - 1 - q0) * stride;
}
f[q] = grid[i];
}
}

for (let q = 1, k = 0, s = 0; q < l3; q++) {
do {
const r = v[k];
s = (f[q] - f[r] + q * q - r * r) / (q - r) / 2;
} while (s <= z[k--]);

k += 2;
v[k] = q;
z[k] = s;
z[k + 1] = INF;
}

for (let q = 0, k = 0; q < l3; q++) {
while (z[k + 1] < q) k++;
const r = v[k];
if (q >= l && q < l * 2)
grid[offset + (q - l) * stride] = factor * (f[r] + (q - r) * (q - r));
}
};
}
Insert cell
Insert cell
originalGrid
Insert cell
d3.extent(originalGrid.ocean)
Insert cell
d3.extent(originalGrid.sign)
Insert cell
viewof originalGrid = {
const N = width * height;
const ocean = new Float64Array(N);
const sign = new Uint8Array(N);

const context = DOM.context2d(width, height, 1);
const path = d3.geoPath(projection, context);

context.fillStyle = "rgb(120, 170, 0)";

context.beginPath();
path(land);

context.stroke(); // stroke gives the border
{
const { data } = context.getImageData(0, 0, width, height);
for (let i = 0; i < N; i++) ocean[i] = data[(i << 2) + 3] > 100 ? 0 : INF;
}

context.fill(); // fill gives the sign (interior/exterior)
{
const { data } = context.getImageData(0, 0, width, height);
for (let i = 0; i < N; i++) sign[i] = data[(i << 2) + 1] > 90;
}

const value = { ocean, sign };
return Object.assign(context.canvas, { value, style: "max-width: 100%" });
}
Insert cell
import { schemes } from "@fil/colormaps"
Insert cell
interpolateOleron = d3.scaleSequential((t) => schemes.oleron[(t * 255) | 0])
Insert cell
import { heatmap } from "@fil/heatmap"
Insert cell
INF = 10000000000
Insert cell
width = 1200
Insert cell
height = width / 2
Insert cell
land = d3.json(
`https://unpkg.com/visionscarto-world-atlas@0.0.6/world/${source}_land.geojson`
)
Insert cell
projection = d3.geoEquirectangular().fitExtent(
[
[0, 0],
[width, height]
],
{ type: "Sphere" }
)
Insert cell
d3 = require("d3@7", "d3-geo-projection@4")
Insert cell
// for reference, the original algo
edt1d = (length) => {
const v = new Uint16Array(length);
const z = new Float64Array(length + 1);
const f = new Float64Array(length);
return (grid, offset, stride) => {
v[0] = 0;
z[0] = -INF;
z[1] = INF;
for (let q = 0; q < length; q++) f[q] = grid[offset + q * stride];

for (let q = 1, k = 0, s = 0; q < length; q++) {
do {
const r = v[k];
s = (f[q] - f[r] + q * q - r * r) / (q - r) / 2;
} while (s <= z[k--]);

k += 2;
v[k] = q;
z[k] = s;
z[k + 1] = INF;
}

for (let q = 0, k = 0; q < length; q++) {
while (z[k + 1] < q) k++;
const r = v[k];
grid[offset + q * stride] = f[r] + (q - r) * (q - r);
}
};
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more