Public
Edited
Aug 1, 2023
Paused
77 forks
Importers
135 stars
Global temperature trendsBeeswarm, Log ScaleContoursDensity contoursBubble chart componentCircle packing componentExploring Data with Vega-LiteStreaming data into VegaVega-Lite Line ChartBrushable scatterplotVega-Lite ScatterplotNight Skies — Lights and Light Pollution WebGL GlobePhysics based t-SNEGraphvizRidgeline plotZoomable sunburstHierarchical edge bundlingMethods of Comparison, ComparedChord diagramA Guide to Guides: Axes & Legends in VegaPSR B1919+21HexbinStacked-to-grouped barsTree of LifeHeat indexZoomable circle packingMarimekkoVizsla and Vega-LiteDirectly labelling linesParallel coordinatesCollapsible treeTangled tree visualizationMarey’s TrainsWorld History TimelineSmall multiple chart cartogramThe Real MVP in the NBAAnimated treemapDensity Contour Matrix with BrushingStars and constellationsHertzsprung–Russell diagramThe Coronavirus landscapeGitHub BurndownCandlestick ChartConcentration values vs. TimeA few days of CO2 levels in my homeIrregular bins histogramELD ViewerDistributions and summary statistics - a collection of Plot examplesMermaidBivariate Bubble MapD3 galleryCalendarStacked bar chartDot plotConnected scatterplotCandlestick chartHistogramForce-directed graphDisjoint force-directed graphIndex chartSankey diagramLine chart, percent changeStacked area chartBubble chartArea chartHorizontal bar chartRadial tidy treeCircle packingIcicleStreamgraphTidy treeCluster treeSunburstHorizon chartBox plotScatterplotDifference chartBand chartBar chart transitionsTreemapLine chart, multiple seriesScatterplot matrix
Brushable scatterplot matrix
Playfair's Wheat and Wages
Insert cell
Insert cell
Insert cell
chart = {

// Specify the chart’s dimensions.
const width = 928;
const height = width;
const padding = 28;
const columns = data.columns.filter(d => typeof data[0][d] === "number");
const size = (width - (columns.length + 1) * padding) / columns.length + padding;

// Define the horizontal scales (one for each row).
const x = columns.map(c => d3.scaleLinear()
.domain(d3.extent(data, d => d[c]))
.rangeRound([padding / 2, size - padding / 2]))

// Define the companion vertical scales (one for each column).
const y = x.map(x => x.copy().range([size - padding / 2, padding / 2]));

// Define the color scale.
const color = d3.scaleOrdinal()
.domain(data.map(d => d.species))
.range(d3.schemeCategory10);

// Define the horizontal axis (it will be applied separately for each column).
const axisx = d3.axisBottom()
.ticks(6)
.tickSize(size * columns.length);
const xAxis = g => g.selectAll("g").data(x).join("g")
.attr("transform", (d, i) => `translate(${i * size},0)`)
.each(function(d) { return d3.select(this).call(axisx.scale(d)); })
.call(g => g.select(".domain").remove())
.call(g => g.selectAll(".tick line").attr("stroke", "#ddd"));

// Define the vertical axis (it will be applied separately for each row).
const axisy = d3.axisLeft()
.ticks(6)
.tickSize(-size * columns.length);
const yAxis = g => g.selectAll("g").data(y).join("g")
.attr("transform", (d, i) => `translate(0,${i * size})`)
.each(function(d) { return d3.select(this).call(axisy.scale(d)); })
.call(g => g.select(".domain").remove())
.call(g => g.selectAll(".tick line").attr("stroke", "#ddd"));
const svg = d3.create("svg")
.attr("width", width)
.attr("height", height)
.attr("viewBox", [-padding, 0, width, height]);

svg.append("style")
.text(`circle.hidden { fill: #000; fill-opacity: 1; r: 1px; }`);

svg.append("g")
.call(xAxis);

svg.append("g")
.call(yAxis);

const cell = svg.append("g")
.selectAll("g")
.data(d3.cross(d3.range(columns.length), d3.range(columns.length)))
.join("g")
.attr("transform", ([i, j]) => `translate(${i * size},${j * size})`);

cell.append("rect")
.attr("fill", "none")
.attr("stroke", "#aaa")
.attr("x", padding / 2 + 0.5)
.attr("y", padding / 2 + 0.5)
.attr("width", size - padding)
.attr("height", size - padding);

cell.each(function([i, j]) {
d3.select(this).selectAll("circle")
.data(data.filter(d => !isNaN(d[columns[i]]) && !isNaN(d[columns[j]])))
.join("circle")
.attr("cx", d => x[i](d[columns[i]]))
.attr("cy", d => y[j](d[columns[j]]));
});

const circle = cell.selectAll("circle")
.attr("r", 3.5)
.attr("fill-opacity", 0.7)
.attr("fill", d => color(d.species));

// Ignore this line if you don't need the brushing behavior.
cell.call(brush, circle, svg, {padding, size, x, y, columns});

svg.append("g")
.style("font", "bold 10px sans-serif")
.style("pointer-events", "none")
.selectAll("text")
.data(columns)
.join("text")
.attr("transform", (d, i) => `translate(${i * size},${i * size})`)
.attr("x", padding)
.attr("y", padding)
.attr("dy", ".71em")
.text(d => d);

svg.property("value", [])
return Object.assign(svg.node(), {scales: {color}});
}
Insert cell
selection = Generators.input(chart) // or use viewof selection = chart
Insert cell
function brush(cell, circle, svg, {padding, size, x, y, columns}) {
const brush = d3.brush()
.extent([[padding / 2, padding / 2], [size - padding / 2, size - padding / 2]])
.on("start", brushstarted)
.on("brush", brushed)
.on("end", brushended);

cell.call(brush);

let brushCell;

// Clear the previously-active brush, if any.
function brushstarted() {
if (brushCell !== this) {
d3.select(brushCell).call(brush.move, null);
brushCell = this;
}
}

// Highlight the selected circles.
function brushed({selection}, [i, j]) {
let selected = [];
if (selection) {
const [[x0, y0], [x1, y1]] = selection;
circle.classed("hidden",
d => x0 > x[i](d[columns[i]])
|| x1 < x[i](d[columns[i]])
|| y0 > y[j](d[columns[j]])
|| y1 < y[j](d[columns[j]]));
selected = data.filter(
d => x0 < x[i](d[columns[i]])
&& x1 > x[i](d[columns[i]])
&& y0 < y[j](d[columns[j]])
&& y1 > y[j](d[columns[j]]));
}
svg.property("value", selected).dispatch("input");
}

// If the brush is empty, select all circles.
function brushended({selection}) {
if (selection) return;
svg.property("value", []).dispatch("input");
circle.classed("hidden", false);
}
}
Insert cell
data = FileAttachment("penguins.csv").csv({typed: true})
Insert cell
import {swatches} from "@d3/color-legend"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more