Published
Edited
Apr 4, 2022
2 forks
13 stars
Global temperature trendsBeeswarm, Log ScaleContoursDensity contoursBubble chart componentCircle packing componentExploring Data with Vega-LiteStreaming data into VegaVega-Lite Line ChartBrushable scatterplotVega-Lite ScatterplotNight Skies — Lights and Light Pollution WebGL GlobePhysics based t-SNEGraphvizRidgeline plotZoomable sunburstHierarchical edge bundlingMethods of Comparison, ComparedChord diagramA Guide to Guides: Axes & Legends in VegaPSR B1919+21HexbinStacked-to-grouped barsTree of LifeHeat indexZoomable circle packingMarimekkoVizsla and Vega-LiteDirectly labelling linesParallel coordinatesCollapsible treeTangled tree visualizationMarey’s TrainsWorld History TimelineSmall multiple chart cartogramThe Real MVP in the NBAAnimated treemapDensity Contour Matrix with BrushingStars and constellationsHertzsprung–Russell diagramThe Coronavirus landscapeGitHub BurndownCandlestick ChartConcentration values vs. TimeA few days of CO2 levels in my home
Irregular bins histogram
ELD ViewerDistributions and summary statistics - a collection of Plot examplesMermaidBivariate Bubble MapD3 galleryCalendarStacked bar chartDot plotConnected scatterplotCandlestick chartHistogramForce-directed graphDisjoint force-directed graphIndex chartSankey diagramLine chart, percent changeStacked area chartBubble chartArea chartHorizontal bar chartRadial tidy treeCircle packingIcicleStreamgraphTidy treeCluster treeSunburstHorizon chartBox plotScatterplotDifference chartBand chartBar chart transitionsTreemapLine chart, multiple seriesScatterplot matrixBrushable scatterplot matrixPlayfair's Wheat and Wages
Also listed in…
Fil’s plots
Plot
Insert cell
Insert cell
Plot.plot({
x: {
label: "Commute time (minutes) →",
ticks: 20
},
y: {
label: "↑ People (per 5 minute interval)",
transform: (n) =>
n * 5 /* 5-minute intervals */ * 1000 /* data is in thousands */,
tickFormat: "~s",
nice: true,
grid: true
},
caption: "Histogram of travel time (to work), US 2000 census.",
marks: [
Plot.rectY(commute, {
x1: "lo",
x2: "hi",
y: (d) => d.people / (d.hi - d.lo),
fill: "#aaa",
insetRight: 1,
title: (d) =>
`${new Intl.NumberFormat("en-US").format(d.people / 1000)} million people\nspend ${d.lo} to ${d.hi} minutes\nto commute to work.`
}),
Plot.text(commute, {
filter: "annotation",
text: "annotation",
x: "hi",
y: (d) => d.people / (d.hi - d.lo),
dx: 2,
dy: 8,
textAnchor: "start"
}),
Plot.ruleY([0])
],
height: 240,
width: 400
})
Insert cell
commute = d3.csvParse(
`lo,hi,people,annotation
0,5,4180
5,10,13687
10,15,18618
15,20,19634
20,25,17981
25,30,7190
30,35,16369,"← For 16.4 million workers, commuting takes 30 to 35 min."
35,40,3212
40,45,4122
45,60,9200
60,90,6461
90,150,3435
`,
d3.autoType
)
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more