Public
Edited
Mar 31, 2024
Importers
26 stars
Insert cell
Insert cell
Insert cell
dimensions = ["r", "g", "b"]
Insert cell
randomDatum = () =>
Object.fromEntries(dimensions.map(d => [d, Math.random() * 255]))
Insert cell
data = Array.from({ length: 3000 }, randomDatum)
Insert cell
distance = (a, b) => Math.hypot(...dimensions.map(d => a[d] - b[d]))
Insert cell
Insert cell
neurons = Array.from({ length: 308 }, randomDatum, replay)
Insert cell
Insert cell
positions = neurons.map(randomPoint) // see implementation below
Insert cell
voronoi = d3.Delaunay.from(positions).voronoi([0, 0, width, height])
Insert cell
// Any function or generator that lists the neighbors of a node is good to use
// see https://observablehq.com/@d3/voronoi-neighbors
neighbors = i => voronoi.neighbors(i)
Insert cell
Insert cell
bmu = d => d3.leastIndex(neurons, u => distance(u, d))
Insert cell
Insert cell
learning_rate = .1
Insert cell
function step(i) {
const d = data[i];

// find the BMU and update it
const u = bmu(d);
update_neuron(u, d, learning_rate);

// update its neighbors too, more gently
for (const n of neighbors(u)) update_neuron(n, d, .25 * learning_rate);

return u;
}
Insert cell
function update_neuron(u, d, alpha) {
const a = neurons[u];
for (const i of dimensions) a[i] += alpha * (d[i] - a[i]);
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
function* run() {
const t = 1 / 200, // sampling for change%
target = 0.05; // target change%
let change = 1,
i = 0;
do {
// select a data point to update
const n = i++ % data.length;
const u = step(n);

// log the number of unhappy data points
change = (change + t * (u !== bmus[n])) / (1 + t);
bmus[n] = u;

// draw this step (progressive time)
if (Math.sqrt(i) % 1 === 0) {
draw();
yield `step ${i}, change rate: ${(change * 100).toFixed(1)}%`;
}

// stop when less than 5% of the recently examined data points are unhappy
} while (change > target && i < 100000);

draw();
yield `stopped after ${i} steps, change: ${(change * 100).toFixed(1)}%`;
}
Insert cell
Insert cell
Insert cell
Insert cell
randomPoint = {
const positions = [...pick2d(width + 30, height, neurons.length, topology)];
return (_, i) => [
positions[i % positions.length][0],
positions[i % positions.length][1] + Math.random()
];
}
Insert cell
bmus = (neurons, Int32Array.from(data).fill(-1))
Insert cell
mutable replay = -1 // ensure neurons, positions, bmus are reset
Insert cell
(show, draw()) // redraw the map when the color selector is clicked
Insert cell
height = 600
Insert cell
import { pick2d } from "@fil/2d-point-distributions"
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more