Published
Edited
Jun 29, 2020
Importers
12 stars
Also listed in…
Algorithms
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
vectors = {
const vectors = data.map(d => numericfields.map(f => d[f]));
if (normalize) {
for (let i = 0; i < numericfields.length; i++) {
const mean = d3.mean(data, d => d[i]),
deviation = d3.deviation(data, d => d[i]),
scale = d3.scaleSymlog();
if (deviation > 0)
for (const d of vectors) d[i] = scale((d[i] - mean) / deviation);
}
}
return vectors.slice(0, maxpoints);
}
Insert cell
Insert cell
config = ({
nComponents: +nComponents,
minDist: +minDist,
nNeighbors: +nNeighbors,
nEpochs: nEpochs === "default" ? undefined : +nEpochs
})
Insert cell
color = d3
.scaleLinear()
.range(["red", "lime"])
.domain([0, vectors.length])
Insert cell
dynamic = true
// want static rendering and no worker? see #UMAP below
Insert cell
Insert cell
/*
* Use this block of code to develop your distance functions and test them synchronously.
* Then paste it into the ‘distances’ cell below, that is actually used in the worker
*/
D = {
const D = {
one: (a, b) => 1,
random: (a, b) => Math.random(),
euclidian: (a, b) =>
Math.sqrt(a.map((_, i) => (a[i] - b[i]) ** 2).reduce((a, b) => a + b, 0)),
cosine: (a, b) => {
const dot = a.map((_, i) => a[i] * b[i]).reduce((a, b) => a + b, 0),
norm2A = a.map(u => u ** 2).reduce((a, b) => a + b, 0),
norm2B = norm2A ? b.map(u => u ** 2).reduce((a, b) => a + b, 0) : 0,
N = norm2A * norm2B;
return !N ? 1 : Math.acos(dot / Math.sqrt(N)) / Math.PI;
}
};
return D;
}
Insert cell
function distances({ vectors, distanceType }) {
const D = {
one: (a, b) => 1,
random: (a, b) => Math.random(),
euclidian: (a, b) =>
Math.sqrt(a.map((_, i) => (a[i] - b[i]) ** 2).reduce((a, b) => a + b, 0)),
cosine: (a, b) => {
const dot = a.map((_, i) => a[i] * b[i]).reduce((a, b) => a + b, 0),
norm2A = a.map(u => u ** 2).reduce((a, b) => a + b, 0),
norm2B = norm2A ? b.map(u => u ** 2).reduce((a, b) => a + b, 0) : 0,
N = norm2A * norm2B;
return !N ? 1 : Math.acos(dot / Math.sqrt(N)) / Math.PI;
}
};

const distance = D[distanceType] || D["euclidian"];

const N = vectors.length,
distances = Float32Array.from({ length: N ** 2 });
for (let i = 0; i < N; i++) {
const a = vectors[i];
distances[i + N * i] = 0;
for (let j = 0; j < i; j++) {
const b = vectors[j];
distances[i + N * j] = distances[j + N * i] = distance(a, b);
}
}
return distances;
}
Insert cell
Insert cell
precomputed = Generators.observe(worker(distances, { vectors, distanceType }))
Insert cell
res = Generators.observe(
worker(
dynamic ? fitdynamic : fit,
{ distances: precomputed, labels, config },
`
const window = {};
importScripts("https://unpkg.com/umap-js@1.3.1/lib/umap-js.js");
const UMAP = window.UMAP;
`
)
)
Insert cell
function fit({ distances, labels, config }) {
const time = performance.now();

const umap = new UMAP(config);

if (labels) umap.setSupervisedProjection(labels);

const flat = typeof distances[0] === "number",
N = flat ? Math.sqrt(distances.length) : distances.length;

umap.distanceFn = flat
? function(i, j) {
return distances[i + N * j];
}
: function(i, j) {
return distances[i] ? distances[i][j] : 1000;
};

return {
result: umap.fit(Uint32Array.from({ length: N }, (_, i) => i)),
time: performance.now() - time
};
}
Insert cell
function* fitdynamic({ distances, labels, config }) {
const time = performance.now();

const umap = new UMAP(config);

if (labels) umap.setSupervisedProjection(labels);

yield {
result: null,
time: performance.now() - time,
epoch: "computing k-nearest neighbors"
};

const flat = typeof distances[0] === "number",
N = flat ? Math.sqrt(distances.length) : distances.length;

umap.distanceFn = flat
? function(i, j) {
return distances[i + N * j];
}
: function(i, j) {
return distances[i] ? distances[i][j] : 1000;
};

const nEpochs = umap.initializeFit(
Uint32Array.from({ length: N }, (_, i) => i)
);

var t = performance.now(),
t0 = t;
for (let i = 0; i < nEpochs; i++) {
umap.step();
t = performance.now();
if (t - t0 > 200) {
t0 = t;
yield {
result: umap.getEmbedding(),
time: performance.now() - time,
epoch: i
};
}
}
yield {
result: umap.getEmbedding(),
time: performance.now() - time,
epoch: nEpochs
};
}
Insert cell
// This symbol is not used, because UMAP is loaded in the worker
UMAP = "🌶"
// redefine if you want to try a non-worker version, with:
/*

res = fit({ distances: precomputed, labels, config })

UMAP = await require("https://unpkg.com/umap-js@1.3.0/lib/umap-js.js").catch(
() => window.UMAP
)

*/
Insert cell
Insert cell
d3 = require("d3@5")
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
mutable loaded = ""
Insert cell
loader = {
switch (testcsv) {
case "Iris":
return require("@observablehq/iris")
.then(l => l.map(d => ((d.color = classify(d.species)), d)))
.then(d => (mutable loaded = d));
case "Diamonds":
return require("@observablehq/diamonds")
.then(l => l.map(d => ((d.color = classify(d.cut)), d)))
.then(d => (mutable loaded = d));
default:
return (
d3
.text(
"https://raw.githubusercontent.com/codebrainz/color-names/master/output/colors.csv"
)
.then(t => d3.csvParse("code,name,color,r,g,b\n" + t))
// cheap labelling
.then(t =>
t.map(d => {
const m = d.code.match(/red|green|blue|yellow|orange|pink/);
if (m) d.base = m[0];
else d.base = "";
return d;
})
)
.then(d => (mutable loaded = d))
);
}
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more