Published
Edited
Sep 20, 2020
Insert cell
md`# Day Eleven, Sept.4th, 2020 `
Insert cell
md` ## Task 6-5

- 6-5-1. When adding value labels on top of each bar, I should not use \`rect.selectAll("text").data(dataset).enter().append("text")...\`. Doing so will add twenty \`text\` element within each \`rect\` element! This is not I am looking for at all. Rather, I should use \`svg.selectAll("text").data(dataset).enter().append("text")\`.

- 6-5-2. \`.style("font-size", "11px")\`.

`
Insert cell
md` ## Task 6-6

- 6-6-2. Whenever you use \`function(){}\`, remember to add \`return\`.

`
Insert cell
md`# Chapter Seven: Scales
`
Insert cell
md`
- Scales are **functions** that map from an **input domain** to an **output range**.
- Why do we need scale. Imagaine we have this dataset: [ 1, 2, 4, 10, 100, 1000, 50000, 10000000000000]. Now, I ask you to draw a bar chart of this dataset, with the height of each bar corresponding to each data value. The first method we can think of is that the first bar will be 1 pixel tall, the second 2 px tall, the third 4 px tall. But the last data value will be 10000000000000 tall! Can you imagine how big a display we need to accommodate this value?

Instead, we might better set the height of the last bar to be 1000, which is reasonable for most displays people are using today. Then, what will be the height of the third bar that corresponds to the value of 4? That's what **scales** do!


`
Insert cell
md`## By the way, I now finally know the basics of how to show the results on Observable that I saw on Scott Murray's book! Take a look:`
Insert cell
d3 = require("d3@6")
Insert cell
html`<svg class="bar"></svg>`
Insert cell
width = 400;
Insert cell
height = 120;
Insert cell
svg = d3.select('.bar').attr('height', height).attr('width', width);
Insert cell
states = [
{'name' : 'New York', 'total_area': 54555, 'land_area': 47126, 'p_water': 0.136},
{'name' : 'Texas', 'total_area': 268596, 'land_area': 261232, 'p_water': 0.027},
{'name' : 'Arizona', 'total_area': 113990, 'land_area': 113594, 'p_water': 0.003},
{'name' : 'California', 'total_area': 163695, 'land_area': 155779, 'p_water': 0.048},
{'name' : 'Mississippi', 'total_area': 48432, 'land_area': 46923, 'p_water': 0.031},
{'name' : 'New Jersey', 'total_area': 8723, 'land_area': 7354 , 'p_water': 0.157},
];
Insert cell
largest_area = d3.max(states, function(d) { return d['total_area'] });
Insert cell
scale = d3.scaleLinear().domain([0, largest_area]).range([0, width]);
Insert cell
rect = svg.selectAll('rect')
.data(states) // bind our data
.enter() // grab the 'new' data points
.append('rect') // append the bars
.attr('x', 0) // set the left hand side to 0
.attr('y', function(d, i) {
return i * 15; // space them 15 pixels apart
})
.attr('height', 10) // each bar is 10 pixels tall
.attr('width', function(d) {
// LOOK AT THIS
return scale(d['total_area']); // USE THE SCALE!!!
});
Insert cell
md`
Go to [Day 12](https://observablehq.com/@hongtaoh/day-twelvth-scales).
`
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more